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Abstract
Building upon the success of low-rank adapter
(LoRA), low-rank gradient projection (LoRP) has
emerged as a promising solution for memory-
efficient fine-tuning. However, existing LoRP
methods typically treat each row of the gradi-
ent matrix as the default projection unit, leav-
ing the role of projection granularity underex-
plored. In this work, we propose a novel frame-
work, VLoRP, that extends low-rank gradient
projection by introducing an additional degree
of freedom for controlling the trade-off between
memory efficiency and performance, beyond the
rank hyper-parameter. Through this framework,
we systematically explore the impact of projection
granularity, demonstrating that finer-grained pro-
jections lead to enhanced stability and efficiency
even under a fixed memory budget. Regarding
the optimization for VLoRP, we present Proj-
Factor, an adaptive memory-efficient optimizer,
that significantly reduces memory requirement
while ensuring competitive performance, even in
the presence of gradient accumulation. Addition-
ally, we provide a theoretical analysis of VLoRP,
demonstrating the descent and convergence of
its optimization trajectory under both SGD and
ProjFactor. Extensive experiments are conducted
to validate our findings, covering tasks such as
commonsense reasoning, MMLU, and GSM8K.

1. Introduction
Large Language Models (LLMs) have demonstrated remark-
able capabilities across various domains (Achiam et al.,
2023; Team et al., 2023; Touvron et al., 2023; Dubey et al.,
2024; Li et al., 2024; Guo et al., 2025). However, these state-
of-the-art models impose substantial memory requirements,
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making them challenging to finetune in practical settings.
For example, fine-tuning an LLM with 7 billion parame-
ters in the bfloat16 format (Dean et al., 2012; Abadi et al.,
2016) requires approximately 14 GB of memory for the pa-
rameters alone. The gradients demand a similar amount of
memory,1 and, with Adam/AdamW (Kingma & Ba, 2014;
Loshchilov & Hutter, 2019) serving as the de facto opti-
mizer, an additional 28 GB is needed for optimizer states.
Including the activations required for backpropagation, the
total memory footprint exceeds 60 GB, rendering such train-
ing prohibitively costly for most users.

To mitigate this training overhead, various parameter-
efficient fine-tuning (PeFT) techniques (Houlsby et al.,
2019; Razdaibiedina et al., 2023) have been developed.
Among the most notable are Low-Rank Adapters (LoRA)
(Hu et al., 2022) and its variants (Dettmers et al., 2023; Liu
et al., 2024; Hayou et al., 2024; Wang et al., 2024), which
decompose matrix-shaped parameters into two low-rank ma-
trices to enable more memory-efficient training. Recently,
a novel family of methods, Low-Rank Gradient Projection
(LoRP) (Hao et al., 2024; Zhao et al., 2024; Chen et al.,
2024b; Zhu et al., 2024), has emerged. LoRP methods also
leverage low-rank properties during LLM training, but rather
than operating at the parameter level, they focus on exploit-
ing the low-rank structure within the gradient. Concretely,
LoRP methods achieve memory reduction by projecting
the gradient matrix G ∈ Rn×m into a low-dimensional
subspace spanned by the columns of a projection matrix
P ∈ Rm×r with r ≪ m. When required for parameter
updates, the gradient is approximated as (GP )P⊤ by pro-
jecting the stored low-dimensional gradient GP back to
the original space. In general, LoRP can offer better mem-
ory efficiency than LoRA, as it only requires the storage of
gradient information in a single low-dimensional subspace,
whereas LoRA necessitates two.

An interesting observation is that LoRP can also be inter-
preted from the perspective of stochastic approximation,
specifically in the form of the forward gradient method (Bay-
din et al., 2022): when P is a random matrix sampled from

1Techniques like layer-wise updates can mitigate this overhead,
but gradient accumulation still necessitates storing gradients in
practice.
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Gaussian distribution N (0, 1
r ), LoRP can be viewed as an

unbiased stochastic approximation of the original gradient,
applied row-wisely (elaborated in Sec.3):

Gi,: ≈ Gi,:PP⊤ =
1

r

r∑
j=1

(Gi,: · vj) v⊤j , (1)

where i = 1, . . . , n, vj ∼ N (0, Im) is the j-th column of√
rP , and Gi,: is the i-th row of G, representing a segment

of the gradient being approximated. In (1), r serves a dual
role: it defines the dimensionality of the projected space in
LoRP and also determines the number of samples used for
stochastic approximation, akin to the query count in Monte
Carlo estimation. From the lens of stochastic approximation,
the effectiveness of estimation is highly influenced simulta-
neously by the target dimensionality (i.e., the size of Gi,:)
and the number of samples r (Berahas et al., 2022; Shen
et al., 2024). If r increases, more independent samples can
reduce variance in (1). Alternatively, keeping r fixed while
decreasing the dimensionality of Gi,: improves accuracy
by reducing the number of dimensions to estimate. This
insight naturally leads to a new degree of freedom in LoRP
methods: rather than fixing the dimensionality of Gi,:,
we can adjust it together with r to balance performance
and memory efficiency.

Building on the above observation, we introduce the con-
cept Projection Granularity defined as the length of G’s
rows, which essentially represents the size of the funda-
mental projection unit in LoRP. In response, we propose
VLoRP (Various-Grained Low-Rank Projection of Gradi-
ents), a novel framework that simultaneously adjusts both
the Projection Granularity and the rank r. By systematically
exploring different configurations of granularity and rank in
VLoRP, we find that, under a fixed memory budget, select-
ing a finer granularity, even with a smaller rank, consistently
leads to superior performance. Additionally, by explicitly
analyzing the mean and variance of gradient estimation, we
establish that VLoRP achieves an O(1/T ) convergence rate
when paired with the SGD optimizer.

On top of it, given that Adam-based optimizers (Kingma
& Ba, 2014; Shazeer & Stern, 2018; Loshchilov & Hutter,
2019) are the de facto standard for training modern LLMs,
we also explore the potential adaptive training schemes for
the VLoRP framework. Specifically, we investigate two
distinct optimization schemes: the Subspace Scheme (SS)
and the Original Space Scheme (OS). In SS, optimization
states are maintained within the low-dimensional subspace.
In contrast, OS projects the low-dimensional gradients back
first before storing and updating the optimization states
within the original space. While both schemes only access
the rank-r alternative of the original gradients, our results
indicate that OS typically outperforms SS. However, since
OS stores the optimizer states in the original full-rank space,

its memory requirements can become prohibitive. To ad-
dress this issue, we propose ProjFactor, a memory-efficient
variant of OS that significantly reduces the memory usage
for storing optimization states while maintaining compara-
ble performance. Finally, we adopt Hamiltonian descent
methods (Maddison et al., 2018; Chen et al., 2023; Liang
et al., 2024) to show that, despite several approximations
made as a compromise of memory efficiency, the Lyapunov
function regarding ProjFactor can monotonically decrease
with time, ensuring that the optimizer converges to a local
optimum.

Our main contributions are as follows: (i) We introduce
VLoRP, a method that facilitates the simultaneous adjust-
ment of Projection Granularity and rank, thereby offering
a more nuanced control over the trade-off between mem-
ory efficiency and performance. Besides, we argue that
finer granularity is more significant than larger rank and
validate it with comprehensive experiments. (ii) We investi-
gate two Adam-based optimization schemes for the VLoRP
framework and propose a novel adaptive optimization al-
gorithm, named ProjFactor. This approach significantly
reduces memory consumption while maintaining competi-
tive performance. (iii) We present theoretical proof for the
convergence of VLoRP with the SGD optimizer, achieving
an O(1/T ) convergence rate. Additionally, we provide a
rigorous theoretical guarantee for VLoRP under ProjFactor
based on the framework of Hamiltonian descent.

2. Background
Low-Rank Gradient Projection (LoRP) Recently,
LoRP algorithms (Hao et al., 2024; Zhao et al., 2024; Chen
et al., 2024b; Zhu et al., 2024; Vyas et al., 2024) have be-
come prominent PeFT methods. These methods leverage
the observation that the gradients in high-dimensional pa-
rameter spaces often lie in a low-dimensional manifold. For
instance, FLoRA (Hao et al., 2024) demonstrates that LoRA
can be approximated by down-projecting gradients into a
low-rank subspace and then up-projecting back using the
same random projection matrix. Galore (Zhao et al., 2024)
follows a similar spirit but derives the projection matrix
through the Singular Value Decomposition (SVD) of the
gradients. Chen et al. (2024b) extends Galore by incorpo-
rating the residual error between the full-rank gradient and
its low-rank approximation, effectively simulating full-rank
updates. APOLLO (Zhu et al., 2024) approximates channel-
wise learning-rate scaling through an auxiliary low-rank
optimizer state derived from random projections. However,
existing LoRP approaches typically treat each row of the
gradient matrix as the default projection unit, leaving the
influence of varying Projection Granularity unexplored.

Forward Gradient (FG) Forward Gradient (FG) is a
widely used stochastic approximation technique for gradient
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Figure 1: Overview of VLoRP versus standard LoRP. Bottom (gray) : In ordinary LoRP, the gradient matrix G is directly
projected row-by-row from Rn×m into Rn×r and stored as Gs. Top (pale beige): In contrast, VLoRP reshapes the original
gradient matrix G first to adjust the granularity of projection (from Rn×m to Rnc×m

c ), and during the update, the project-
backed gradient G̃o would be reshaped back into Rn×m to update the parameter W ∈ Rn×m.

estimation, particularly in scenarios where the direct compu-
tation of gradients is infeasible or expensive (Wengert, 1964;
Silver et al., 2021; Baydin et al., 2022; Ren et al., 2022).
Instead of computing exact gradients, FG estimates them
by taking directional derivatives along multiple random per-
turbation directions. Formally, for a differentiable model
with parameters θ ∈ Rd, FG approximates the gradient of
the objective function L as:

∇θL(θ) ≈
1

N

N∑
i=1

(
∇θL(θ)⊤zi

)
zi, (2)

where N is the number of random perturbation directions,
and zi denotes the i.i.d. sampled random vector.

More broadly, FG belongs to the family of stochastic approx-
imation methods (Robbins & Monro, 1951; Nevel’son &
Has’ minskii, 1976; Spall, 1992), which iteratively estimate
function properties based on noisy or partial observations.
These methods are widely used in optimization and root-
finding problems where exact computations are impractical.

For brevity, additional related work is deferred to Ap-
pendix E, and the notation list is provided in Appendix A.

3. Exploring Various Granularities of
Low-Rank Gradient Projection

In this section, we provide a comprehensive understanding
of LoRP methods and introduce VLoRP, which leverages
the concept of Projection Granularity to optimize gradient
projection. In Section 3.1, we reinterpret LoRP through
the lens of stochastic approximation. In Section 3.2, we
define Projection Granularity as a new degree of freedom in
VLoRP, enabling a subtler control of the trade-off between
memory efficiency and performance. Next, in Section 3.3,
we show that finer Projection Granularity under a fixed

“Memory Budget” improves performance, highlighting its
importance over rank. Finally, in Section 3.4, we prove
an O(1/T ) convergence rate for VLoRP with SGD, with
theoretical proofs provided in Appendix C.

3.1. Understanding LoRPs through the Lens of
Stochastic Approximation

Given the gradient matrix G ∈ Rn×m and the projection
matrix P ∈ Rm×r, LoRP approaches project the gradient
into a low-dimensional subspace spanned by columns of
projection matrix P , and project it back to the original space
when gradient information is required for parameter update:

Gs := GP, Go := γGsP⊤ = γGPP⊤, (3)

where we use Gs and Go to represent the projected gradient
in the subspace and the project-backed rank-r approxima-
tion of the original gradient respectively, and γ denotes the
scaling coefficient and usually set as 1. In practice, only the
matrix Gs ∈ Rn×r needs to be stored with r ≪ min{m,n}.
Particularly, if each element of P is i.i.d. sampled from
Gaussian distributionN (0, 1

r ), then Go can be reformulated
into

Go =
1

r

r∑
j=1

Gvjvj⊤ =


1
r

r∑
j=1

(G1,: · vj) v⊤j
...

1
r

r∑
j=1

(Gn,: · vj) v⊤j

 , (4)

where vj ∼ N (0, Im) is the j-th column vector of
√
rP ,

and Gi,: ∈ R1×m is the i-th row of the gradient matrix G.
(4) highlights that: (a) Go can be represented as an average
over r rank-one estimation, each involving one random
direction vj ; (b) Each row 1

r

∑r
j=1(v

⊤
j G

⊤
i,:)v

⊤
j aligns with

the formulation of the averaged forward gradients as in (2).
Thus, we have the following observation:
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Observation 3.1. Equation (4) indicates that for each pa-
rameter matrix, LoRP can be interpreted as a row-wise
application of forward gradient estimation with r samples.

In general, when training an LLM parametrized by θ with
an objective function L, the stochastic approximation of
the gradient can be applied at different levels. Consider
two extreme cases: (1) We can flatten the entire parameter
set θ into a single vector θ′ ∈ RD, where D is the total
number of parameters, and estimate the gradient using a
single random vector v ∈ RD. This approach aligns with
the spirit of the MeZO algorithm (Malladi et al., 2023)2;
(2) Alternatively, the estimation can be applied element-
wise: for each 1-dimensional parameter ξ ∈ θ, the co-
ordinate partial derivative ∇ξL can be approximated as
1
r′

∑r′

i=1 vi∇ξLvi, where vi ∼ N (0, 1). Concatenating all
such approximations yields an estimate of the full gradient
matrix G, resembling the coordinate gradient estimation
(CGE) approach (Chen et al., 2024a).

These examples illustrate that stochastic approximation can
be applied to parameters of varying sizes, leading to dif-
ferent methods. Naturally, according to Observation 3.1,
the Projection Granularity, defined by the row size of G,
can also be adjusted in LoRPs. This insight motivates our
exploration of low-rank gradient projections with varying
granularities.

3.2. Various-Grained Low-Rank Projection of Gradient

In this section, we present the details of our framework,
termed VLoRP, which introduces a novel degree of free-
dom—namely, the Projection Granularity—beyond the con-
ventional hyperparameter rank to balance memory efficiency
and training performance in LoRP approaches.

The core idea is straightforward: because gradient projec-
tion is typically applied row-wisely, one can reshape the
gradient matrix to modify the row size and correspondingly
adjust the shape of the projection matrix generated, leading
to the adjustment of the Projection Granularity naturally.
Concretely, given an LLM, we introduce the granularity
factor c, which can reshape any gradient G ∈ Rn×m into
G̃ ∈ Rnc×(m/c). Analogous to the rank r, which globally
sets the projection rank for all matrix-shaped parameters, c
similarly serves as a global hyperparameter that controls the
granularity of projection. Then, we formally have3:

G̃s := Reshape
(
G, [nc, m

c ]
)︸ ︷︷ ︸

denoted as G̃

P̃ ,

Go := Reshape
(

G̃sP̃⊤︸ ︷︷ ︸
denoted as G̃o

, [n,m]
)
,

(5)

2MeZO uses the central difference to estimate the JVP in (2).
3with a little abuse of notations, Go in (3) is now redefined in

(5), as they both represent the rank-r estimation of G.

where the projection matrix P̃ is of shape m
c × r, with each

element i.i.d. sampled fromN (0, 1
r ). Under this setting, (3)

emerges as a special case with c = 1. Decreasing c < 1 hor-
izontally compresses G, thereby coarsening the Projection
Granularity, whereas increasing c > 1 does the opposite. In
practice, c is chosen to be a power of two for implementation
convenience, and both m

c and nc must be integers.

The overall framework is illustrated on the left of Figure 1:
at each iteration, VLoRP first reshapes the original gradient
matrix G (from Rn×m to Rnc×(m/c)) to adjust the Projec-
tion Granularity. The reshaped G̃ is then projected into
the subspace to obtain G̃s which needs to be stored. Dur-
ing the parameter update, G̃s will be projected back to the
original space to obtain G̃o, after which we reshape G̃o

back to update the parameter. Notably, in practice, the only
but important difference between VLoRP and other LoRP
methods is the pair of reshaping operations, underscoring
its simplicity of implementation.

3.3. Benefits of Finer Projection Granularity

Fundamentally, VLoRP introduces a novel degree of free-
dom that extends beyond the rank parameter in LoRP ap-
proaches. This raises a critical question: What level of the
Projection Granularity is optimal for gradient projection?

To address this question, it is essential to establish a fair ba-
sis for comparison first: on the one hand, for a fixed rank r,
employing a finer-grained projection typically improves per-
formance but increases memory requirements; on the other
hand, for a fixed granularity factor c, increasing the rank
similarly enhances performance while incurring additional
memory costs. We thereby denote a specific pair of (c, r)
as a “configuration” of VLoRP, and define the “Memory
Budget”M as the product of c and r—for configurations
sharing the same M, the size of G̃s, which is needed to
be stored, is the same. Based on this, we claim that for
all configurations sharing the same memory budget, i.e.,
ciri = cjrj = M,∀i, j, opting for a finer-grained pro-
jection (larger c) is generally preferable, despite the as-
sociated reduction in rank (r = M

c ). There are several
immediate advantages:

Computational Efficiency Given the granularity factor
c, the memory budgetM and the reshaped gradient G̃ ∈
Rnc×(m/c) , the gradient projection operation G̃P̃ leads
to a computational complexity O

(
nmM

c

)
. By choosing a

finer granularity (larger c), we can reduce the overall FLOPs
involved.

Generation Efficiency of Projection Matrix Obviously,
the efficiency of this generation process depends on the
dimensions of the projection matrix P̃ of the shapem

c ×
M
c .

As c increases, the projection granularity becomes finer,
leading to a quadratic reduction in the size of the generated
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matrix and hence more efficient generation.

Numerical Error As c increases, the numerical accuracy
of the random projection tends to improve. This can be
attributed to the interplay between matrix dimensions and
floating-point arithmetic properties. A larger c reduces the
number of columns in G̃, thereby decreasing the number
of floating-point operations per dot product in matrix multi-
plications. Consequently, this helps mitigate the accumula-
tion of numerical errors, which is particularly important in
low-precision training scenarios such as float16 or bfloat16,
where limited mantissa precision can lead to instability. We
provide an analytical experiment in Appendix D.3 to sup-
port this observation. Furthermore, this numerical stability
advantage is further amplified when using gradient accumu-
lation or Adam-based optimizers, as these methods involve
iteratively accumulating optimization states.

Besides, our experiments in Section 5 demonstrate that un-
der the same memory budgetM, finer-grained projections
can consistently outperform coarser counterpart, suggesting
that c play a more critical factor than rank r.

3.4. Theoretical Guarantee

Incorporating Projection Granularity into gradient estima-
tion offers clear benefits, but it is crucial to ensure that
finer-grained projections do not compromise the conver-
gence of model training. This section provides theoretical
guarantees that under a fixed memory budgetM, varying
the granularity factor c and rank r does not significantly
affect the mean and variance of one-step gradient estimation
or the overall convergence rate.

We consider a loss function L : Rn×m → R defined over
matrix parameters W ∈ Rn×m. Fix a memory budgetM, a
granularity factor c, rank r, and G = ∇WL(W ). Through-
out this paper, we adopt the Frobenius norm and inner prod-
uct as the primary metrics for matrices and vectors.

Proposition 3.2. The gradient estimator Go ∈ Rn×m satis-
fies the following properties:

E[Go] = G, E∥Go −G∥2 =
m+ c

M
∥G∥2.

Proposition 3.2 demonstrates that the estimator Go is unbi-
ased and its variance is bounded by O

(
m+c
M
)
. For LLMs,

where the granularity factor c is significantly smaller than
the parameter dimension m, the effect of altering c on gradi-
ent approximation is minimal under a fixed memory budget
M. The unbiasedness and bounded variance of Go lead to
the following convergence guarantee:

Theorem 3.3. Let L be an L-smooth function with respect
to the matrix-shaped parameter W . Assume the parameter
updates are given by Wt+1 = Wt − η Go

t , where the step
size is defined as η = M

(m+c+M)L := C. Then, for any

T ≥ 1:

1

T

T−1∑
t=0

E
[
∥Gt∥2

]
≤ 2C

T

(
L(W0)− L(W ∗)

)
,

where W ∗ is a global minimizer of L.

Theorem 3.3 confirms that using random-projection-based
gradient estimation with VLoRP in conjunction with SGD
achieves an O(1/T ) convergence rate, regardless of the
granularity factor c.

4. Adaptive Memory-Efficient Optimization
In this section, we first investigate potential Adam-based
optimization schemes for VLoRP, then introduce a memory-
efficient variant, ProjFactor, for the superior scheme, and
finally provide theoretical convergence proof for it. We en-
able gradient accumulation (Wang et al., 2013; Smith et al.,
2018) for the projected gradient by default, which means at
each update stage, we can only access G̃s =

∑K
i=1 G̃

s
i/K,

where K is the number of accumulation substeps.

Optimization Schemes: SS vs. OS Broadly, with access
only to G̃s, there are two typical schemes for storing the
optimization states of Adam and performing the associated
updates for VLoRP, as illustrated on the left of Figure 2: (1)
Subspace Scheme (SS) retains the optimization states ms

and vs and computes the adapted gradient ∆̃s
t = m̃s

t/
√
ṽst

within the subspace, while (2) Original Space Scheme
(OS) projects G̃s back to the original space, where the
optimization states m̃o and ṽo are stored and the adapted
gradient is computed directly. Mathematically, the update
rules for both schemes are defined as follows4:

SS: m̃s
t = β1m̃

s
t−1 + (1− β1)G̃

s
t ,

ṽst = β2ṽ
s
t−1 + (1− β2)(G̃

s
t )

⊙2,

∆̃s
t = m̃s

t/
√
ṽst ,

Wt = Wt−1 − ηReshape
(
∆̃s

t P̃
⊤, [n,m]

)
;

OS: m̃o
t = β1m̃

o
t−1 + (1− β1)(G̃

s
t P̃

⊤),

ṽot = β2ṽ
o
t−1 + (1− β2)(G̃

s
t P̃

⊤)⊙2,

∆̃o
t = m̃o

t/
√
ṽot ,

Wt = Wt−1 − ηReshape
(
∆̃o

t , [n,m]
)
.

(6)

OS Performs Better From (6), it can be observed that
for momentum-based SGD optimizers, where the second
moment v is excluded, the Subspace Scheme (SS) and
Original Space Scheme (OS) are equivalent, since m̃o

t =
m̃s

t P̃
⊤. However, when the nonlinear second moment is

incorporated, SS and OS become different. An intuition is

4⊙2 denotes element-wise squaring.
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Figure 2: Left: Schematic illustration of the Subspace Scheme (SS, green) operating in a learned subspace, and the Original
Scheme (OS, blue) operating in the original space. Right (top row, panels a–c): Fine-tuning loss curves of SS (green),
OS (blue), and Adam (orange) on three tasks, showing that OS outperforms SS by a large margin while has a comparable
performance with Adam. Right (bottom row, panels d–f): Comparison of OS (blue) and its approximate algorithm
ProjFactor (purple), indicating that ProjFactor closely approximates the dynamic of OS. Specifically, columns (a) and (d) test
on the Commonsense Reasoning task, columns (b) and (e) test on the MMLU, and columns (c) and (f) test on the GSM8K.

that the dynamics of OS are closer to Adam’s, as (1) both OS
and Adam adapt the gradient directly in the original space,
and (2) previous works (Zhao et al., 2024; Hao et al., 2024)
have shown that the gradient of LLMs exhibits a low-rank
structure, implying that G̃P̃ P̃⊤ is capable of preserving the
primary information of G̃. To substantiate it, we finetune a
LLaMA2-7B on three different benchmarks and compare
the loss curves of SS, OS, and the vanilla Adam. As depicted
in Figure 2 (right, top rows, panels a-c), while all three
schemes reduce the loss, SS exhibits a noticeably slower
and less effective convergence compared to OS and Adam.
In contrast, OS closely tracks the loss curve of Adam.

ProjFactor: a Memory-Efficient Optimizer for VLoRP
While OS achieves superior performance, it generally re-
quires more memory during training compared to SS, as it
does not reduce the memory usage of optimization states,
which still occupy O(nm) space. To address this, we pro-
pose ProjFactor which (1) maintains m̃s instead of m̃o in
the subspace and project it back to the original space when
calculating ∆o

t , which is justified by the fact m̃o = m̃sP̃⊤;
(2) follows the spirit of Adafactor (Shazeer & Stern, 2018)
by applying rank-1 decomposition on (G̃s

t P̃
⊤)⊙2, which

only requires the storage of two vectors, significantly re-
ducing memory consumption while preserving effective
second-moment estimates. Compared to Adafactor, which
applies the rank-1 decomposition directly on the gradient,
our method applies the rank-r approximation of G̃ first be-
fore the squaring and decomposition. The final algorithm
is outlined in Appendix B. Since Adafactor can achieve
performance comparable to Adam (Shazeer & Stern, 2018;

Hao et al., 2024), it is reasonable to conjecture that ProjFac-
tor can similarly match OS. We showcase the performance
comparison between ProjFactor and OS in Figure 2(d-f),
which aligns with our expectations.

Convergence Analysis To analyze ProjFactor’s conver-
gence, we adopt the Hamiltonian descent framework, fol-
lowing the line of work (Maddison et al., 2018; Chen et al.,
2023; Liang et al., 2024; Nguyen et al., 2024). The infinites-
imal updates of Projfactor is defined as follows:

d

dt
m̃s

t = a(G̃s
t − m̃s

t ); v̂
o
t =

ṽortṽ
o
ct

1T
n ṽ

o
rt

;

d

dt
ṽort = b((G̃o

t )
⊙21m − ṽort);

d

dt
ṽoct = b(1T

n (G̃
o
t )

⊙2 − ṽoct);

d

dt
Wt = Reshape

(
−m̃s

t P̃
⊤
/√

v̂ot , [n,m]
)
,

(7)

where a, b are constants. The corresponding Lyapunov
function (Hamiltonian) is defined as

H(W, m̃s, ṽor , ṽ
o
c ) = L(W ) +

1

2a

〈
m̃s,

m̃s

√
v̂o

〉
.

Then we have the following convergence guarantee:
Theorem 4.1. Suppose the functions in system (7) are con-
tinuously differentiable. Under mild assumptions, we have

(1) For (Wt, m̃
s
t , ṽ

o
rt, ṽ

o
ct) satisfying (7),

d

dt
H(Wt, m̃

s
t , ṽ

o
rt, ṽ

o
ct) ≤ 0.
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Table 1: Performance Comparison on Commonsense Reasoning. All models are first finetuned on the Commonsense170k (Hu
et al., 2023a) dataset and then evaluated separately on 8 reasoning tasks. We set the Memory BudgetM = 256 for VLoRP,
i.e., the product of c and r equal 256. For a fair comparison, we also set the rank of all other low-rank-based methods as 256.

Methods ARC C ARC E BoolQ HellaSwag OBQA PIQA SIQA winogrande Avg.

Pretrain-Untuned 42.26 ± 1.45 75.26 ± 0.87 76.86 ± 0.73 56.17 ± 0.49 30.40 ± 2.08 77.91 ± 0.97 45.11 ± 1.13 58.78 ± 1.30 58.84
Adam 47.12 ± 1.46 78.55 ± 0.83 82.27 ± 0.65 56.08 ± 0.49 33.60 ± 2.13 77.45 ± 0.96 52.53 ± 1.13 71.69 ± 1.25 62.41
Adafactor 48.06 ± 1.46 79.22 ± 0.82 80.50 ± 0.68 56.24 ± 0.49 34.20 ± 2.14 77.56 ± 0.96 52.02 ± 1.13 71.22 ± 1.26 62.38

LoRA(r = 256) 44.23 ± 1.46 76.66 ± 0.85 80.21 ± 0.68 55.79 ± 0.49 33.00 ± 2.13 76.57 ± 0.97 47.94 ± 1.13 69.69 ± 1.27 60.51
Galore(r = 256) 44.13 ± 1.45 76.65 ± 0.87 78.23 ± 0.72 57.59 ± 0.49 32.00 ± 2.09 77.95 ± 0.97 46.01 ± 1.13 69.71 ± 1.29 60.28
fira(r = 256) 44.06 ± 1.45 76.63 ± 0.87 78.12 ± 0.73 57.69 ± 0.49 32.40 ± 2.09 77.78 ± 0.97 46.21 ± 1.13 69.89 ± 1.29 60.35
APOLLO(r = 256) 44.28 ± 1.45 76.26 ± 0.87 77.74 ± 0.73 57.00 ± 0.49 31.40 ± 2.08 77.97 ± 0.97 46.11 ± 1.13 69.46 ± 1.29 60.03

VLoRP
- c = 2−6, r = 214 42.92 ± 1.45 76.22 ± 0.87 79.27 ± 0.71 57.53 ± 0.49 32.60 ± 2.10 77.91 ± 0.97 46.72 ± 1.13 69.85 ± 1.29 60.38
- c = 2−4, r = 212 43.34 ± 1.45 76.26 ± 0.87 79.54 ± 0.71 57.58 ± 0.49 32.00 ± 2.09 77.64 ± 0.97 46.72 ± 1.13 70.01 ± 1.29 60.39
- c = 2−2, r = 210 43.34 ± 1.45 76.30 ± 0.81 79.45 ± 0.71 57.47 ± 0.49 32.20 ± 2.09 77.75 ± 0.97 46.78 ± 1.13 70.01 ± 1.29 60.41
- c = 20, r = 28 43.69 ± 1.45 77.02 ± 0.86 79.27 ± 0.71 57.49 ± 0.49 31.80 ± 2.08 78.07 ± 0.97 47.49 ± 1.13 69.77 ± 1.29 60.57
- c = 22, r = 26 44.03 ± 1.45 76.81 ± 0.87 79.17 ± 0.71 57.59 ± 0.49 31.80 ± 2.08 78.02 ± 0.97 47.19 ± 1.13 69.53 ± 1.29 60.53
- c = 24, r = 24 44.71 ± 1.45 77.27 ± 0.86 79.42 ± 0.71 57.50 ± 0.49 32.20 ± 2.09 77.86 ± 0.97 47.54 ± 1.13 70.09 ± 1.29 60.82
- c = 26, r = 22 44.97 ± 1.45 77.65 ± 0.85 80.46 ± 0.69 57.56 ± 0.49 33.60 ± 2.11 77.97 ± 0.97 48.06 ± 1.13 69.69 ± 1.29 61.25
- c = 28, r = 20 45.56 ± 1.46 77.78 ± 0.85 80.58 ± 0.69 57.59 ± 0.49 34.00 ± 2.12 77.86 ± 0.97 48.16 ± 1.13 69.69 ± 1.29 61.40

(2) Any bounded solution (Wt, m̃
s
t , ṽ

o
rt, ṽ

o
ct)t of (7) con-

verges to a stationary point of L(W ) as t→∞.

Theorem 4.1 presents a Hamiltonian interpretation of Proj-
factor, indicating that the Lyapunov function, namely, the
“energy” of the system, decreases monotonically over time.
In addition, it ensures that ProjFactor stabilizes at a local
optimum, provided the step sizes are sufficiently small. We
defer the detailed assumption and proof to Appendix C.3.

5. Experiments
In this section, we evaluate the effectiveness of VLoRP
across multiple finetuning tasks, demonstrating its competi-
tiveness with state-of-the-art baselines. More experimental
studies and implementation details can be found in Ap-
pendix D.

Datasets We present a comprehensive evaluation of our
proposed approaches using three benchmarks: (1) Common-
sense Reasoning, which covers 8 reasoning tasks includ-
ing BoolQ (Clark et al., 2019), PIQA (Bisk et al., 2020),
SIQA (Sap et al., 2019), Hellaswag (Zellers et al., 2019),
WinoGrande (Sakaguchi et al., 2020), ARC-e (Clark et al.,
2018), ARC-c (Clark et al., 2018), and OBQA (Mihaylov
et al., 2018); (2) The MMLU benchmark (Hendrycks et al.,
2020), which encompasses a wide range of subjects includ-
ing Humanities, STEM, Social Sciences, and Other fields;
(3) Finally, the GSM8K dataset (Cobbe et al., 2021), which
is a dataset of 8.5K high-quality problems of mathematics.

Baselines We compare VLoRP with 7 state-of-the-art
baselines, covering full-parameter finetuning, LoRA, and
LoRP methods. Specifically, we compare with Pretrain-
Untuned, which represents the basic performance of the

pre-trained model without finetuning, Adam (Kingma &
Ba, 2014), Adafactor (Shazeer & Stern, 2018), LoRA (Hu
et al., 2022), Galore (Zhao et al., 2024), fira (Chen et al.,
2024b), and APOLLO (Zhu et al., 2024).

Experimental Settings We use the LLaMA2-7B model
with the bfloat16 data type as the primary testbed for all
methods. Each method is guaranteed that every token in the
training set is encountered at least once. Gradient accumu-
lation and activation checkpointing (Chen et al., 2016) are
enabled. VLoRP is optimized with ProjFactor by default.

Results and Analysis We report the performance of all
methods on: (1) commonsense reasoning tasks in Table 1,
(2) the MMLU benchmark in Table 2, and (3) the GSM8k
task in Figure 3. In general, all finetuning methods yield
significant performance improvements compared to the un-
tuned model. Among the finetuning baselines, Adam and
Adafactor generally achieve the highest performance across
tasks. Notably, Adafactor delivers comparable even superior
results to Adam, consistent with previous findings (Shazeer
& Stern, 2018; Hao et al., 2024). Furthermore, the proposed
VLoRP, optimized with ProjFactor, not only rivals the per-
formance of the strongest baselines of efficient finetuning
but in many cases surpasses them. On top of it, under a
fixed memory budget, configurations of VLoRP with finer
Projection Granularity (i.e., larger factor c albeit smaller
r) tend to achieve higher average accuracy. For instance,
the finest-grained VLoRP configuration

(
c = 28, r = 20

)
achieves the highest scores of 61.40, 55.83, and 29.42 on
Commonsense Reasoning, MMLU, and GSM8k, respec-
tively, among all tested configurations of c and r with the
same memory budget. This suggests that Projection Granu-
larity may play a more critical role than rank in balancing
memory efficiency and performance.
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Table 2: Performance Comparison on the MMLU bench-
mark. We also set the Memory Budget M = 256 for
VLoRP. The best-performing configurations are highlighted.

Methods Hum. STEM S. Sci. Other ALL

Pretrain-Untuned 39.54 34.85 49.14 47.73 42.53
Adam 52.63 44.92 65.31 62.45 56.01
Adafactor 53.01 46.55 66.13 56.87 56.80

LoRA (r = 256) 50.74 43.61 60.93 59.73 53.55
Galore (r = 256) 50.22 42.61 60.25 59.52 52.93
fira (r = 256) 49.85 42.49 60.31 59.55 52.83
APOLLO (r = 256) 49.12 41.42 57.71 56.91 51.13

VLoRP
- c = 2−6, r = 214 47.06 39.54 56.33 56.71 49.65
- c = 2−4, r = 212 49.88 42.50 58.44 58.69 52.22
- c = 2−2, r = 210 50.04 41.21 58.74 58.63 52.01
- c = 20, r = 28 50.62 43.23 61.08 60.83 53.64
- c = 22, r = 26 50.93 44.31 61.04 60.51 53.91
- c = 24, r = 24 50.85 44.22 61.08 60.91 54.05
- c = 26, r = 22 51.94 44.53 63.53 62.85 55.42
- c = 28, r = 20 52.29 46.18 64.05 62.24 55.83

14.94

31.01

30.78

25.63

25.85

25.40

29.42

10.00 15.00 20.00 25.00 30.00 35.00

Untuned
Adam

Adafactor
Galore

fira
LoRA

VLoRP*

GSM8k Score Fine → Coarse

(c = 2!, 𝑟 = 1) 	→ c = 2"#, 𝑟 = 2$%	

Figure 3: Left: Performance comparison of different meth-
ods on GSM8K. Right: Performance comparison among
the configurations of VLoRP withM = 256. The x-axis
indicates configurations from fine to coarse (left to right).

Different Memory Budgets Besides, in Figure 4, we
present the performance of VLoRP under different projec-
tion granularities across varying memory budgets. Overall,
the results indicate that configurations with finer projection
granularities consistently outperform other coarser configu-
rations, regardless of the memory budget level. Furthermore,
when the rank is fixed (the three subcolumns within each
column), the performance improves with finer granularities.

Memory Analysis We illustrate the memory usage of var-
ious methods in Figure 5, emphasizing that VLoRP achieves
the most significant memory reduction compared to base-
line approaches. When incorporating gradient accumula-
tion, certain memory-efficient methods, such as fira and
APOLLO, fail to achieve memory usage below Adafactor.
This limitation stems from their reliance on the full-rank
gradient for update computations, which primarily reduces
the memory associated with optimization states but not the
gradient itself. In contrast, optimizing VLoRP with ProjFac-
tor fundamentally reduces memory consumption by solely
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Figure 4: Performance Evaluation for Different Projection
Granularities under Varying Memory Budgets on Common-
sense. M denotes the memory budget. All subcolumns
inside the same categoryM/r share the same rank r.

Adam
 67.46 G

Adafactor w/o 
momemtum

33.69 G

fira
 36.64 G
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 36.20 G

Lora
 28.80 G

Galore 
25.69 G

VLoRP+ProjFactor
 24.13 G

Figure 5: GPU Memory Usage Comparison on LLaMA2-
7B Model with Batch Size 16 and Max Length 1024.

operating on the projected gradients. For a parameter ma-
trix W ∈ Rn×m, the total memory required for VLoRP is
O(mn+ 2nM+ n+m), whereM = c · r is the memory
budget. On the other hand, LoRA requires significantly
more storage, O(mn+ 4mM+ 4nM), due to its need for
additional low-rank matrices and optimization states.

6. Conclusion
In this work, we introduce VLoRP, a memory-efficient fine-
tuning method for LLMs, which implements low-rank gradi-
ent projections with varying granularities. By adjusting the
projection granularity alongside rank, VLoRP offers a more
nuanced control over the trade-off between memory effi-
ciency and performance. Furthermore, we present ProjFac-
tor, an adaptive optimizer that reduces memory consumption
while maintaining competitive performance. Theoretical
analysis and empirical results confirm the effectiveness of
our approach, making it a promising solution for practical
deployment in memory-constrained settings.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning by improving the memory efficiency
and performance of LLM training. Specifically, our pro-
posed method facilitates more efficient utilization of mem-
ory, which is particularly critical in the context of the current
scarcity of computational resources. Furthermore, consid-
ering the significant energy consumption associated with
training large models, particularly in terms of electricity
and its environmental impact, a more efficient algorithm
like ours represents a substantial step toward alleviating the
energy costs of model training.
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Table 3: A detailed table for notations used in this paper.

Symbol Definition Description

(·)s Subspace tag Distinguish variables in the projected low-dimensional space from those
in the original space.

(·)o Original Space tag Distinguish variables in the original space from those in the projected
low-dimensional space;

(·)t Update step tag Denotes the specific step of current variables, for example, the gradient
G at the t-th update step can be denoted as Gt;

(·)⊙2 Element-wise Squaring The element-wise squaring of a matrix;

∥ · ∥ Frobenius norm Taking the square root of the summation of each squared element;

⟨·, ·⟩ Frobenius inner product Inner product induced by Frobenius norm;

W The Parameters Matrix The shape is assumed as n×m with n ≥ m;

L The loss function The loss function of the training procedure;

P, P̃ Projection Matrix Randomly sampled from a normal distribution N (0, 1
r
) unless otherwise

stated. The shape of P is m× r with r ≪ min{m,n}, while the shape
of P̃ is (m/c)× r or (m/c)× (M/c) ;

c granularity factor The parameter c is a hyperparameter of VLoRP that controls the granu-
larity of projections. For instance, setting c = 2 reduces the granularity
of projections by half for the entire model. For vanilla low-rank-based
methods like LoRA or Galore, their c is equal to 1;

r rank The parameter r is a hyperparameter of VLoRP and other low-rank based
memory-efficient methods, such as LoRA and Galore;

M Memory Budget We introduce the memory budget, denoted as M, for VLoRP to facilitate
the comparison between different configurations of (c, r). The memory
budget M is defined as the product of c and r, as both parameters jointly
influence the memory requirements during LLM training. For other
low-rank-based methods, where c = 1, the rank is set to r = M;

G,Gs, Go Gradient Gradient computed for a single forward-backward step. The shape is
equal to W ; Gs represents the projected gradient, i.e. Gs = GP , and
the shape of Gs is n× r; Go represents the projected-back gradient, i.e.
Go = GPP⊤, where r is the rank, and the shape Go is n×m;

G̃, G̃s, G̃o Reshaped Gradient The reshaped version of gradients. The shape of G̃ is equal to nc ×
(m/c); The shape of Gs is nc× r; The shape G̃o is nc× (m/c);

G,Gs,Go Accumulated Gradient Accumulation of gradients over multiple forward-backward steps, that
is G=

∑k
i=1 Gi where k is number of accumulation steps; Gs/ Go

represents the projected/projected-back gradient, i.e. Gs = GP ; Go =
GPP⊤;

m,ms,mo First moment of Adam mt = β1mt−1 + (1 − β1)Gt, where β1 represents the coefficient.
ms represents the states stored in the subspace, i.e. ms

t = β1m
s
t−1 +

(1 − β1)G
s
t ; mo represents the states stored in the original space, i.e.

mo
t = β1m

o
t−1 + (1− β1)G

o
t ;

v, vs, vo Second moment of Adam vt = β2vt−1 + (1 − β2)(Gt)
⊙2; vst = β1v

s
t−1 + (1 − β1)(G

s
t )

⊙2;
vot = β1v

o
t−1 + (1− β1)(G

o
t )

⊙2.
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A. Notations
In Table 3, we provide the notations used in the main body and appendix of this paper. In case of any discrepancies between
the definitions of the symbols in the table and those in the text, the definitions in the text should be followed.

Next, in Appendix B, we discuss our optimization scheme, specifically the algorithmic details of VLoRP with ProjFactor.
Appendix C presents the proofs for all theoretical results and propositions introduced in the main text. Appendix D further
provides several analytical experiments and ablation studies with specific implementation details. Finally, in Appendix E,
we conduct an in-depth discussion of related works.

B. Algorithm of ProjFactor for VLoRP
In Algorithm 1, we present the final algorithm employed in our study—optimizing VLoRP with ProjFactor. Formally,
given a learning rate η, a parameter matrix W , rank r, granularity factor c, and resampling gap τ , we first initialize m̃s,
ṽor , and ṽoc , which serve as optimization states and need to be stored throughout training. Next, at the beginning of each
update iteration, a zero matrix G̃s ∈ 0nc×r is created to store the projected accumulated gradient. Subsequently, K substeps
of forward-backward propagation are performed with each gradient ∇WL(Bi) (Bi denotes the mini-batch data of the
accumulation step i) projected, reshaped, and accumulated in G̃s. After the gradient projection and accumulation, in line 13,
we update the state m̃s of the first moment, while in lines 14–16, we first project G̃s

t back to the original space via G̃s
t P̃

⊤,
and then perform the second moment update through factorization (Shazeer & Stern, 2018). It is important to note that
m̃s is first projected back to the original space using m̃s

t P̃
⊤ prior to calculating ∆o

t , in alignment with the Original Space
Scheme. The following relation justifies this:

m̃o
t = β1 m̃

o
t−1 + (1− β1)G̃

o
t =

t∑
τ=1

βt−τ
1 (1− β1)G̃

o
τ =

t∑
τ=1

βt−τ
1 (1− β1)

(
G̃s

τ P̃
⊤
)
= m̃s

t P̃
⊤.

Additionally, before updating W in line 17, we multiply a bias correction term 1−βt
2

1−βt
1

, as in Adam (Kingma & Ba, 2014) and

Adafactor (Shazeer & Stern, 2018). Besides, with the same ζ, the result of generation P̃ is equal.

Algorithm 1 ProjFactor for VLoRP

1: Input: learning rate η, parameter W ∈ Rn×m, rank r, granularity factor c, resampling gap τ ;
2: Initialize: m̃s ← 0nc×r, ṽor ← 0nc×1, ṽoc ← 01×m

c ;
3: while not converged do
4: if t mod τ == 0 then
5: Resampling random seed ζ;
6: end if
7: G̃s

t ← 0nc×r;
8: for i = 1, 2, . . . ,K do
9: Sample a mini-batch Bi, calculate L(Bi) and then generate P̃ ∈ Rm

c ×r with p̃ij ∼ Nζ(0, 1/r)

10: G̃s
t ← G̃s

t +Reshape(∇WL(Bi)/K,
[
nc, m

c

]
)P̃ ;

11: end for
12: Generate P̃ ∈ Rm

c ×r with p̃ij ∼ Nζ(0, 1/r);
13: m̃s ← β1m̃

s + (1− β1)G̃
s
t ;

14: ṽor ← β2ṽ
o
r + (1− β2)

(
G̃s

t P̃
⊤
)⊙2

1m;

15: ṽoc ← β2ṽ
o
c + (1− β2)1

⊤
n

(
G̃s

t P̃
⊤
)⊙2

;

16: ∆o
t = Reshape

(
m̃s

t P̃
⊤/
(√

ṽo
r ṽ

o
c

1⊤
n ṽo

r
+ ϵ
)
, [n,m]

)
;

17: W ←W − η
1−βt

2

1−βt
1
∆o

t ;
18: t← t+ 1;
19: end while
20: Output: Optimized W .
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C. Proof of Theorems
In this section, we provide the proof for Proposition C.2, Theorem 3.3, and Theorem 4.1. Throughout the proofs, we adopt
the Frobenius norm and inner product as the primary metrics for matrices and vectors.

C.1. Proof of Proposition 3.2

We first concretely compute the variance of the forward gradient estimator with Gaussian samples for vector-input functions.
A similar case is studied in Shen et al. (2024), where the samples are i.i.d. Rademacher distribution.

Lemma C.1. Let h : RN → R be a differentiable function, and fix any point ϕ ∈ RN . Let g := ∇ϕh(ϕ) ∈ R1×N be the
gradient viewed as a row vector. Suppose we draw b i.i.d. samples v1, . . . , vb ∼ N (0, IN ), with each vi being an N × 1
column vector. Define the forward gradient estimator of size b by

ĝ =
1

b

b∑
i=1

gviv
⊤
i ,

then its mean squared error is

E
[
∥ĝ − g∥2

]
=

N + 1

b
∥g∥2.

Proof. Unbiasedness: Consider a single random sample v ∼ N (0, IN ). Since E[vv⊤] = IN , we have

E
[
gvv⊤

]
= gE[vv⊤] = g.

By linearity of expectation, averaging b such i.i.d. samples preserves unbiasedness:

E
[
1

b

b∑
i=1

(
gviv

⊤
i

)]
= g.

Variance: First, consider one-sample estimator gvv⊤. Let α := gv ∈ R. Then g(vv⊤) = (gv)v⊤ = αv⊤. By moment
identities, we have

E
[
∥gvv⊤ − g∥2

]
= E

[
∥αv⊤ − g∥2

]
= E

[
∥αv⊤∥2 − 2⟨αv⊤, g⟩+ ∥g∥2

]
= (N + 1)∥g∥2.

With b i.i.d. samples,

E
[
∥ĝ − g∥2

]
=

1

b2

b∑
i=1

E
[
∥gviv⊤i − g∥2

]
=

1

b2
(
b · (N + 1) ∥g∥2

)
=

N + 1

b
∥g∥2.

We consider a loss function L : Rn×m → R defined over matrix parameters W ∈ Rn×m. Fix a memory budgetM, a
granularity factor c and rank r withM = cr. Let G = ∇WL(W ), and let G̃, G̃s, G̃o, and Go follow the definitions in (5).

Proposition C.2. The gradient estimator Go satisfies the following properties:

E[Go] = G, (8)

E∥Go −G∥2 =
m+ c

M
∥G∥2. (9)

Proof. Recall that G is reshaped into G̃ ∈ R(nc)×(m/c), and then randomly approximated by G̃o = G̃P̃ P̃⊤, where
P̃ ∈ Rm

c ×r have i.i.d. Gaussian columns vi ∈ Rm/c, i = 1, . . . , r with r =M/c, such that

P̃ P̃⊤ =

r∑
i=1

viv
⊤
i .
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And finally, G̃o is reshaped back to size n×m to obtain Go.

Unbiasedness: Row-by-row application of Lemma C.1 shows each row of G̃o is an unbiased estimator of the corresponding
row of G̃. Hence E[G̃o] = G̃. Consequently, E[Go] = G, for reshaping does not affect the bias.

Variance: We first write

G̃o =
1

r

r∑
i=1

G̃viv
⊤
i =


1
r

r∑
i=1

(G̃1,:vi)v
⊤
i

...
1
r

r∑
i=1

(G̃nc,:vi)v
⊤
i

 .

By Lemma C.1, each row (dimension d = m
c ) with b = r

c samples has variance

E

∥∥∥∥∥1r
r∑

i=1

(v⊤i G̃
⊤
i,:)v

⊤
i

∥∥∥∥∥
2
 =

m
c + 1

r
∥G̃i,:∥2 =

m+ c

M
∥G̃i,:∥2,

where the last equality usesM = cr. Subsequently, summing over all rows in G̃ yields

E
[
∥G̃o − G̃∥2

]
=

m+ c

M
∥G̃∥2.

Because reshaping does not change the Frobenius norm,

E
[
∥Go −G∥2

]
=

m+ c

M
∥G∥2.

Thus Go is unbiased with the stated mean-squared error.

C.2. Proof of Theorem 3.3

Theorem C.3. Let L be an L-smooth function with respect to the matrix-shaped parameter W , i.e.,

L(W ′) ≤ L(W ) +
〈
G,W ′ −W

〉
+

L

2
∥W ′ −W∥2

for any W,W ′ ∈ Rn×m. Assume the parameter updates are given by:

Wt+1 = Wt − ηGo
t ,

where the step size is defined as η = M
(m+c+M)L ≜ C. Then, for any T ≥ 1:

1

T

T−1∑
t=0

E
[
∥Gt∥2

]
≤ 2C

T

(
L(W0)− L(W ∗)

)
,

where W ∗ is a global minimizer of L.

Proof. By L-smoothness and the update rule Wt+1 = Wt − ηGo
t , we have

L(Wt+1) ≤ L(Wt) +
〈
Gt,Wt+1 −Wt

〉
+

L

2

∥∥Wt+1 −Wt

∥∥2
= L(Wt)− η

〈
Gt, G

o
t

〉
+

Lη2

2

∥∥Go
t

∥∥2
= L(Wt)− η

〈
Gt, G

o
t

〉
+

Lη2

2

∥∥Go
t −Gt

∥∥2 + Lη2

2

∥∥Gt

∥∥2 + Lη2
〈
Go

t −Gt, Gt

〉
.

16



Taking the expectation over the randomness in Go
t conditioning on Wt, and then using the unbiasedness of Go

t , we get

E
[
L(Wt+1)|Wt

]
≤ E

[
L(Wt)|Wt

]
−
(
η − Lη2

2

)
E
[
∥Gt∥2|Wt

]
+

Lη2

2
E
[
∥Go

t −Gt∥2|Wt

]
= L(Wt)−

(
η − Lη2

2

)
∥Gt∥2 +

Lη2

2
E
[
∥Go

t −Gt∥2|Wt

]
.

By Proposition C.2, E
[
∥Go

t −Gt∥2|Wt

]
= m+c

M ∥Gt∥2. Hence

E
[
L(Wt+1)

∣∣Wt] ≤ L(Wt)−
(
η − (m+ c+M)Lη2

2M

)
∥Gt∥2.

Taking expectation over Wt, we further write

E
[
L(Wt+1)

]
≤ E

[
L(Wt)

]
−
(
η − (m+ c+M)Lη2

2M

)
E
[
∥Gt∥2

]
. (10)

Summing (10) from t = 0 to t = T − 1 and telescoping on the left-hand side:

E
[
L(WT )

]
≤ E

[
L(W0)

]
−

T−1∑
t=0

(
η − (m+ c+M)Lη2

2M

)
E
[
∥Gt∥2

]
.

Rearrange to isolate the sum of gradient norms:

T−1∑
t=0

E
[
∥Gt∥2

]
≤
L(W0)− E

[
L(WT )

]
η − (m+c+M)Lη2

2M

≤ L(W0)− L(W ∗)

η − (m+c+M)Lη2

2M

,

where W ∗ is a minimizer for L. Choosing η = M
(m+c+M)L := C yields

1

T

T−1∑
t=0

E
[
∥Gt∥2

]
≤ 2(m+ c+M)L

MT

(
L(W0)− L(W ∗)

)
=

2C

T

(
L(W0)− L(W ∗)

)
.

Thus, on average, the norm of the true gradient converges to zero at a rate O(1/T ).

C.3. Proof of Theorem 4.1

To analyze the convergence properties of ProjFactor, we leverage the Hamiltonian descent framework (Maddison et al., 2018;
Chen et al., 2023; Liang et al., 2024; Nguyen et al., 2024), a powerful tool for understanding the behavior of optimizers in
continuous time. This framework allows us to model ProjFactor’s update rule as an ordinary differential equation (ODE),
providing insights into its long-term stability and convergence.

The infinitesimal updates of Projfactor is defined as follows:

d

dt
m̃s

t = a(G̃s
t − m̃s

t ); v̂
o
t =

ṽortṽ
o
ct

1T
n ṽ

o
rt

;

d

dt
ṽort = b((G̃o

t )
⊙21m − ṽort);

d

dt
ṽoct = b(1T

n (G̃
o
t )

⊙2 − ṽoct);

d

dt
Wt = Reshape

(
−m̃s

t P̃
⊤
/√

v̂ot , [n,m]
)

(11)

The corresponding Lyapunov function (Hamiltonian) is defined as

H(W, m̃s, ṽor , ṽ
o
c ) = L(W ) +

1

2a

〈
m̃s,

m̃s

√
v̂o

〉
.

Subsequently, we make the following mild assumptions, consistent with prior works in this area, to establish the mathematical
foundation for our analysis. (Maddison et al., 2018; Chen et al., 2023; Liang et al., 2024; Nguyen et al., 2024).
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Assumption C.4. Assume the functions in system (11) are continuously differentiable, and

(1) d
dtH(Wt, m̃

s
t , ṽ

o
rt, ṽ

o
ct) = 0 implies G̃s

t = 0.

(2) For any t > 0, if Gt ̸= 0, then G̃s
t ̸= 0 and G̃o

t ̸= 0.

(3) For any t > 0, ∥G̃o
t∥

2

∥ṽo
rt∥
≤ R.

Here, Assumption C.4 (1) claims that the system’s Lyapunov function reaches a stationary point only when G̃s
t = 0. This

condition aligns with the behavior of widely used optimizers like SGD with momentum and Adam (Liang et al., 2024).
Assumption C.4 (2) prevents the projection operator P̃ from annihilating nonzero gradients. Whenever G̃s = 0 or G̃o = 0,
we have G = 0, which maintains consistency between projected and original spaces. Assumption C.4 (3) imposes a
reasonable bound on the ratio of the squared gradient norm to the second moment. This bound can be intuitively derived by
expanding the second-moment update rule in ProjFactor (Algorithm 1):

ṽor ← β2ṽ
o
r + (1− β2)

(
G̃s

t P̃
⊤
)⊙2

1m.

By G̃o
t = G̃s

t P̃
⊤ and the summation of geometric series, we further have

ṽort =

t∑
τ=1

βt−τ
2 (1− β2)(G̃

o
τ )

⊙21m.

Hence, if G̃o
t → 0 as t→∞, ∥G̃o

t∥
2

∥ṽo
rt∥

will be bounded.

Now we present the following convergence analysis, which interprets Projfactor from the perspective of the Hamiltonian
descent method.
Theorem C.5. Suppose the functions in system (11) are continuously differentiable. Under Assumption C.4, we have

1. For (Wt, m̃
s
t , ṽ

o
rt, ṽ

o
ct) satisfying (11),

d

dt
H(Wt, m̃

s
t , ṽ

o
rt, ṽ

o
ct) ≤ 0.

2. Any bounded solution (Wt, m̃
s
t , ṽ

o
rt, ṽ

o
ct)t of (11) converges to a stationary point of L(W ) as t→∞.

Proof. First, we prove that d
dtH(Wt, m̃

s
t , ṽ

o
rt, ṽ

o
ct) ≤ 0. For simplicity, we denote that

Rt :=
1

2a

〈
m̃s,

m̃s

√
v̂o

〉
.

By chain rule of derivatives, we have

d

dt
H(Wt, m̃

s
t , ṽ

o
rt, ṽ

o
ct) =

d

dt
L(Wt) +

d

dt
Rt

=

〈
dL(Wt)

dWt
,
dWt

dt

〉
+

〈
dRt

dm̃s
t

,
dm̃s

t

dt

〉
+

〈
dRt

dṽort
,
dṽort
dt

〉
+

〈
dRt

dṽoct
,
dṽoct
dt

〉
.

(12)

We compute the terms in (12) respectively. Firstly, by the dynamics in (11),〈
dL(Wt)

dWt
,
dWt

dt

〉
+

〈
dRt

dm̃s
t

,
dm̃s

t

dt

〉
=

〈
∇L(Wt),−Reshape

(
m̃s

t P̃
⊤√

v̂ot
, [n,m]

)〉
+

〈
1

2a

2m̃s
t

√
1⊤
n ṽ

o
rt√

ṽortṽ
o
ct

, a(G̃s
t − m̃s

t )

〉

= − tr

(
m̃s

t P̃
⊤ Reshape

(
∇L(Wt)

⊤, [nc, m
c ]
)√

v̂ot

)
+ tr

(
m̃s

t (G̃
s
t )

⊤√
v̂ot

)
−

〈
m̃s

t√
v̂ot

, m̃s
t

〉

= −

〈
m̃s

t√
v̂ot

, m̃s
t

〉
,

(13)
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where the third equality is based on the fact that reshaping both matrices of Frobenius inner product does not change the
result.

Secondly, notice that
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d(ṽort)k
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))
− b

4a

n∑
k=1

m∑
j=1

(m̃s
t )

2
kj

√
1⊤
n ṽ
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where the inequality comes from Assumption C.4 (3) and the fact that −
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o
rt

≤ b

4a

m∑
l=1

n∑
i=1

(
(m̃s

t )
2
il√
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where the inequality is due to b
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(ṽo
rt)i(ṽ
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Combining (12), (13), (14), (15), and setting a ≥ (R+ 1)b/4a, we have
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which demonstrates that the Lyapunov functionH(Wt, m̃
s
t , ṽ

o
rt, ṽ

o
ct) is monotonically decreasing along the ODE trajectory.
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Furthermore, define

I =

{
the union of complete trajectories satisfying

d

dt
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s
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o
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ct) = 0, ∀t

}
.

Subsequently, by LaSalle’s invariance principle (LaSalle, 1960), as t → +∞, the accumulation points of any trajectory
{(Wt, m̃

s
t , ṽ

o
rt, ṽ

o
ct)}t lies in I. By Assumption C.4 (1), the points in the limit set I should satisfy that for any t, G̃s

t = 0.
Hence, by Assumption C.4 (2), we further have Gt = ∇L(Wt) = 0 for any t. This indicates that any trajectory will
converge to the local optimum.

Theorem C.5 demonstrates the Lyapunov function’s monotonic descent and the infinitesimal ODE system’s convergence to
local optimum. These results imply that ProjFactor stabilizes at a local optimum, provided the step sizes are sufficiently
small.

D. More Empirical Analysis
In this section, we present additional empirical results. Specifically, we provide descriptions of the baseline methods
used for comparison in Appendix D.1. The loss curves corresponding to different projection granularities are reported in
Appendix D.2. Further details on the numerical error testing procedure are elaborated in Appendix D.3. In Appendix D.4,
we explore alternative approaches for generating projection matrices. The impact of warm-up steps on our optimization
scheme is examined in Appendix D.6, while the effect of projection matrix update frequency is analyzed in Appendix D.5.
Additionally, we evaluate the throughput efficiency of different methods in Appendix D.7. Further experimental results are
provided in Appendix D.8 and Appendix D.9. A detailed overview of the hyperparameters used in our experiments is given
in Appendix D.10. Finally, sample prompts utilized during training are presented in Appendix D.11.

We use the implementation from HuggingFace for the Adam, Adafactor, and LoRA approaches while all other methods
were implemented on our own by referencing their respective open-source code repositories. The complete code for our
implementations and experiments will be released.

D.1. Description of Baselines

In this section, we provide a brief overview of the finetuning methods compared in our study.

• Adam (Kingma & Ba, 2014) is an adaptive gradient-based optimization method that maintains exponentially moving
averages of both the first and second moments of gradients. By adjusting step sizes for each parameter individually,
Adam often converges faster and requires less finetuning of hyperparameters compared to non-adaptive methods.

• Adafactor (Shazeer & Stern, 2018) generalizes the adaptive learning-rate principles of Adam but employs a factored
approximation of second-order moments. This factorization reduces memory overhead, making Adafactor particularly
suitable for large-scale training while preserving performance benefits similar to Adam.

• LoRA (Hu et al., 2022) (Low-Rank Adaptation) provides an efficient approach to finetuning large language models by
introducing a trainable, low-rank decomposition into selected layers. This design substantially reduces both memory
usage and training time, all while maintaining competitive performance levels.

• Galore (Zhao et al., 2024) is a recent optimizer that extends low-rank adaptation techniques by exploiting the low-
rank structure in the update gradient rather than in the parameters themselves. Specifically, it applies singular value
decomposition (SVD) to construct a projection matrix that projects the original gradient into a subspace.

• fira (Chen et al., 2024b) improves upon Galore by combining both the projected gradient and the residual component
in the original space. Nonetheless, this design necessitates retaining the original gradient for each update step, which
increases memory consumption under gradient accumulation.

• APOLLO (Zhu et al., 2024) is a newly introduced, memory-efficient optimization algorithm that approximates
channel-wise learning-rate scaling through an auxiliary low-rank optimizer state derived from random projections.

Besides, FLoRA (Hao et al., 2024) is equivalent to our methods by setting the granularity factor c = 1, which also generates
the gradient from Gaussian distribution.
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D.2. Loss Curves of Different Projection Granularities

Figure 6 presents the loss curves of two distinct-grained configurations of projections, Fine-Grained Projection (c =
256, r = 1), and Ordinary-Grained Projection (c = 1, r = 256), evaluated on the Commonsense170k dataset under a
fixed Memory BudgetM = 256. Figure 6(a) shows the performance when trained LLaMA2-7B with ProjFactor, where
both projection configurations rapidly reduce the loss and perform comparably in the initial training phase. However,
Fine-Grained Projection demonstrates a clear advantage over Ordinary-Grained Projection as the training continues. In
contrast, Figure 6(b) illustrates the results obtained when LLaMA2-7B is trained with the Subspace Scheme (see (6) and
right of Figure 2). Here, Fine-Grained Projection consistently outperforms Ordinary-Grained Projection, even in the earlier
stages of training.

Both Kinds of Projections Rapidly Reduce the 
Loss at the Beginning

Fine-Grained Projection Clearly 
Prevails at the end

(a)

Fine-Grained Projection outperform 
Ordinary-Grained Projection 
even at the beginning stage for SS

(b)

Figure 6: Loss curves of different grained projections on the Commonsense170k dataset: (a) Training LLaMA2-7B with
ProjFactor; (b) Training LLaMA2-7B with the Subspace Scheme (as described in Section 4). The performance of two
types of grained projections is compared under the same memory budget of 256.

D.3. Numerical Error Testing for the Projection Operation
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Figure 7: Left: Illustration of computational numerical error for a single parameter matrix during an update step. The
numerical error of the projection operator is defined as the absolute difference between G̃bf16P̃bf16 and G̃float64P̃float64,
averaged across all parameter matrices applied low-rank gradient projection. Right: Comparison of projections’ numerical
errors for configurations under a constant memory budgetM = 256. The y-axis denotes the training steps, which is divided
into 7 stages, while the x-axis is 7 different-grained configurations.

In this section, we elaborate on the numerical error testing discussed in Section 3.3. We evaluate numerical errors introduced
by projection operations under varying granularities with a fixed memory budget M = 256. The procedure is shown
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in the LHS of Figure 7. Specifically, given a VLoRP configuration, at each update step, we compute G̃s = G̃P̃ using
bfloat16, denoted as G̃s

bf16 = G̃bf16P̃bf16. Simultaneously, we create double-precision copies G̃float64 and P̃float64,
which are numerically equivalent to their bfloat16 counterparts but retain higher precision (e.g., 0.1100 vs. 0.11). Using
these, we compute G̃s

float64 = G̃float64P̃float64. The discrepancy between G̃s
float64 and G̃s

bf16 reflects numerical errors
introduced by low-precision computation. For example, in low precision, 0.11 × 0.11 = 0.01, while in high precision,
0.1100× 0.1100 = 0.0121, yielding an error of 0.0021. The optimization is performed using the G̃s

bf16 datatype.

To quantify this error, we compute the absolute element-wise difference between G̃s
float64 and G̃s

bf16, averaging across all
elements and parameter matrices subject to low-rank projections. This yields a numerical error metric δ(c,r) for a given
configuration (c, r):

δ(c,r) = Average∀G̃s

(
Average∀(G̃s)ij∈G̃s

∣∣∣((G̃s)ij)float64 − ((G̃s)ij)bf16

∣∣∣) (17)

The results, shown on the RHS of Figure 7, examine seven configurations (c, r), ranging from the finest (c = 256, r = 1) to
the coarsest (c = 0.0625, r = 4096) under the constraintM = 256. We normalize δ(c,r) by δ(c=256,r=1) and compute a
moving average over every 50 steps. The numerical error increases almost monotonically as the configuration shifts from
fine-grained (c = 256, r = 1) to coarse-grained (c = 0.0625, r = 4096), a trend consistent throughout training. This
observation partly explains why finer-grained configurations typically yield better performance given a fixed memory budget
M—fine-grained projections have lower numerical errors introduced by using the low-precision datatype which makes the
finer granularity of projection (larger c albeit smaller r) a better choice among all the configurations shared a sameM.

D.4. Different Ways of Projection Matrix Generation

In this section, we investigate three approaches for generating the projection matrix. The first method, ”normal,” involves
sampling the projection matrix from a standard normal distribution. The second, ”Rademacher,” samples the projection
matrix from the Rademacher distribution, which consists of entries drawn from {−1,+1} with equal probability. The third
approach, ”SVD,” constructs the projection matrix using singular value decomposition (SVD), following the methodology
proposed in Galore (Zhao et al., 2024). These methods are evaluated on the Commonsense Reasoning task using the
LLaMA2-7B model as the testbed. For all experiments, the maximum input sequence length is set to 1024, and the effective
batch size is configured to 512. We finetune the model for 1 epoch in total.

(a) (b)

Figure 8: Comparative Analysis of Projection Matrix Generations in LLaMA2-7B Training on the Commonsense170k
Dataset: (a). Training loss curves across all training steps; (b). Zoomed-in view of convergence behavior highlighting loss
variability among projection methods.

As illustrated in Figure 8(a) and the zoomed-in view in Figure 8(b), the three projection matrix generation methods—normal,
Rademacher, and SVD—demonstrate broadly similar training dynamics. Each approach effectively reduces the training
loss during the initial steps and ultimately converges to nearly equivalent final loss values. The zoomed-in view highlights
a subtle difference, with the normal-based projection slightly outperforming the others in achieving a lower training loss
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after convergence. These results align with the Johnson–Lindenstrauss lemma, which asserts that in high-dimensional
spaces, random projections can effectively preserve geometric properties. Therefore, we adopt the sampling from normal
distribution as the method for generating the projection matrix, as it provides computational and storage efficiency without
compromising performance.

D.5. Ablation Study on Update Frequency of Projection Matrix

According to recent research on low-rank projection in memory-efficient LLM training (Hao et al., 2024; Zhao et al., 2024;
Jaiswal et al., 2024), it is advantageous to keep the vectors vi constant over several training steps before resampling or
reconstructing them, in order to balance the trade-off between variance and biases during training.

(a) (b)

Figure 9: Ablation study on the update frequency of the projection matrix: (a). Training loss statistics across different update
frequencies of the projection matrix. ”Last n steps” represents the number of final steps used to calculate the statistics; (b).
MMLU scores for different categories.

Figure 9 presents an ablation study evaluating the effect of varying the update frequency of the projection matrix on training
loss and MMLU performance. Figure 9(a) shows the training loss statistics calculated over the last 10, 20, and 50 steps of
training for different update frequencies, while Figure 9(b) illustrates the MMLU scores across STEM, social sciences, other
(e.g., business, health), and the overall average for the same frequencies.

In Figure 9(a), the box plots highlight that a lower update frequency, such as 1, results in higher loss values with greater
variability. As the update frequency increases, the loss decreases and stabilizes, with frequencies of 20-30 demonstrating
relatively consistent performance. This suggests that updating the projection matrix too frequently may introduce high
variance leading to the instability of training while a larger interval for updating the projection matrix can cause the model’s
updates to become constrained within fixed subspaces, leading to a degradation in performance. Figure 9(b) reveals the
impact of update frequency on MMLU scores. A similar trend emerges, where frequencies of 30 yield the highest average
scores though the performance gain is slight. However, a very low-frequency 1, which updates the projection matrix at each
update step results in significantly lower scores across all categories, particularly in STEM and social sciences, indicating
the negative impact of high variance on the model’s ability to generalize.

D.6. Study on the Warmup Steps

Figure 10 illustrates the effect of varying warm-up steps on the training loss when training our VLoRP framework with
ProjFactor. The experiments evaluate five configurations: no warm-up, and warm-up steps set to 10, 20, 50, and 100. The
x-axis represents the training steps on a logarithmic scale, while the y-axis shows the training loss.

The results demonstrate that warm-up steps make the early loss curve smoother. Specifically, the configuration without
warm-up exhibits a sharp spike in training loss during the initial steps, suggesting instability in optimization at the start of
training. In contrast, introducing a warm-up phase helps to mitigate this instability, as evidenced by smoother loss curves for
all configurations with warm-up steps. While early-stage differences are prominent, the training loss for all configurations
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(a) (b)

Spike in early-stage

Similar loss at end

1e-5

Figure 10: Effect of different warm-up steps on training loss for VLoRP: (a). Learning rate schedules with varying warm-up
steps; (b). Impact of different warm-up steps on the model’s convergence.

converges to similar values by the end of training. This suggests that the choice of warm-up steps primarily impacts the
transient phase of training without significantly affecting the final model performance. Notably, longer warm-up periods
incur a trade-off, as they delay the convergence but enhance the stability of training in the initial phase.

D.7. Throughput Analysis
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Figure 11: Throughput Analysis of our method, LoRA, Galore, and Adam. Throughput, plotted on the y-axis, is defined as
the number of tokens (including padding tokens) processed per second, while the x-axis represents the training step. Please
note that the value of throughput would be influenced by factors such as the input sentence length, effective batch size, GPU
hardware, and the number of padding tokens.

This section presents a comparative analysis of the throughput performance of VLoRP, LoRA, Galore, and the baseline
Adam optimizer during training. For LoRA and Galore, the rank r is set to 256. In the case of VLoRP, the projection matrix
is generated by sampling from a standard normal distribution, and the ProjFactor optimization algorithm is employed. For
VLoRP, the granularity factor c is set to 256, and the rank r is fixed at 1. These methods are evaluated on the Commonsense
Reasoning task using the LLaMA2-7B model as the testbed. All experiments are conducted with a maximum input sequence
length of 1024 and an effective batch size of 512.

Figure 11 illustrates the throughput of various methods over the course of 200 training steps. Overall, our method,
demonstrates comparable throughput to both LoRA and the baseline Adam optimizer, while outperforming the Galore
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method. A notable observation is the periodic plunges in throughput experienced by Galore, occurring approximately every
50 iterations. This behavior can be attributed to the singular value decomposition (SVD) operation (Zhao et al., 2024) used
to regenerate the projection matrix in the GaLore algorithm, with the regeneration interval explicitly set to 50 iterations,
which, according to our experiments, is the optimal update interval for projection matrices in GaLore.

D.8. Experiments with Different Models

Apart from LLaMA2-7B (Touvron et al., 2023), we also evaluated the effectiveness of our VLoRP approach on both a
weaker model, GPT2-XL, and a more powerful model, LLaMA3.2-3B (Dubey et al., 2024). The results are presented in
Table 4 and Figure 12.

Table 4: Performance Comparison on Commonsense Benchmark Tasks with GPT2-XL. The table presents the results
for several baseline methods and different configurations of our proposed VLoRP approach across eight commonsense
reasoning tasks. All models are first finetuned on the Commonsense170k (Hu et al., 2023a) dataset and then evaluated
separately on different tasks. We set the Memory Budget as 64.

Methods ARC C ARC E BoolQ HellaSwag OBQA PIQA SIQA winogrande Avg.

Adam 25.51 ± 1.27 57.87 ± 1.01 61.19 ± 0.85 40.15 ± 0.49 22.40 ± 1.87 71.22 ± 1.06 40.23 ± 1.11 58.64 ± 1.38 47.15
Adafactor 25.09 ± 1.27 57.53 ± 1.01 59.63 ± 0.86 39.82 ± 0.49 23.00 ± 1.88 71.11 ± 1.06 40.02 ± 1.11 59.19 ± 1.38 46.92

LoRA(r=64) 24.83 ± 1.26 57.11 ± 1.02 58.59 ± 0.86 39.98 ± 0.49 22.80 ± 1.88 70.89 ± 1.06 40.28 ± 1.11 59.12 ± 1.38 46.70
Galore(r=64) 25.09 ± 1.27 57.83 ± 1.01 59.08 ± 0.86 40.20 ± 0.49 22.80 ± 1.88 71.00 ± 1.06 40.48 ± 1.11 57.38 ± 1.39 46.73
fira(r=64) 25.09 ± 1.27 57.87 ± 1.01 59.17 ± 0.86 40.13 ± 0.49 22.80 ± 1.88 70.89 ± 1.06 40.43 ± 1.11 58.01 ± 1.39 46.80
APOLLO(r=64) 24.74 ± 1.26 58.04 ± 1.01 59.69 ± 0.86 39.99 ± 0.49 22.20 ± 1.86 70.51 ± 1.06 40.43 ± 1.11 58.33 ± 1.39 46.74

VLoRP
- c = 2−6, r = 212 24.91 ± 1.26 57.49 ± 1.01 58.84 ± 0.86 40.07 ± 0.49 23.20 ± 1.89 71.00 ± 1.06 40.48 ± 1.11 59.04 ± 1.38 46.88
- c = 2−4, r = 210 25.00 ± 1.27 57.41 ± 1.01 59.20 ± 0.86 40.04 ± 0.49 23.20 ± 1.89 70.73 ± 1.06 40.38 ± 1.11 58.48 ± 1.38 46.81
- c = 2−2, r = 28 25.00 ± 1.27 57.37 ± 1.01 59.51 ± 0.86 40.01 ± 0.49 23.00 ± 1.88 71.00 ± 1.06 40.48 ± 1.11 58.56 ± 1.38 46.87
- c = 20, r = 26 25.51 ± 1.27 57.45 ± 1.01 59.33 ± 0.86 40.18 ± 0.49 23.20 ± 1.89 70.67 ± 1.06 40.28 ± 1.11 58.25 ± 1.39 46.86
- c = 20, r = 28 25.17 ± 1.27 57.62 ± 1.01 59.54 ± 0.86 40.08 ± 0.49 22.60 ± 1.87 71.22 ± 1.06 40.38 ± 1.11 58.72 ± 1.38 46.92
- c = 22, r = 24 25.09 ± 1.27 57.62 ± 1.01 59.79 ± 0.86 40.08 ± 0.49 22.80 ± 1.88 70.89 ± 1.06 40.33 ± 1.11 58.96 ± 1.38 46.94
- c = 24, r = 22 25.17 ± 1.27 57.45 ± 1.01 59.72 ± 0.86 40.02 ± 0.49 23.40 ± 1.90 70.84 ± 1.06 40.53 ± 1.11 58.96 ± 1.38 47.01
- c = 26, r = 20 25.51 ± 1.27 57.87 ± 1.01 60.67 ± 0.85 40.11 ± 0.49 23.00 ± 1.88 71.06 ± 1.06 40.23 ± 1.11 58.56 ± 1.38 47.13

Specifically, Table 4 shows the performance of VLoRP on GPT2-XL across eight commonsense reasoning benchmarks.
VLoRP consistently outperforms or remains competitive with other PeFT methods such as LoRA, GaLore, and fira. Besides,
among different configurations of VLoRP, finer-grained projections (c = 26, r = 1) achieve the highest average score
(47.13), demonstrating the effectiveness of fine-grained low-rank projections.

GSM8k Score Fine → Coarse

(c = 2!, 𝑟 = 1) 	→ c = 2"#, 𝑟 = 2$%	
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38.36
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35.56
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Figure 12: Left: Performance comparison of different methods on GSM8K with LLaMA3.2-3B. Right: Performance
comparison among the configurations of VLoRP withM = 256. The x-axis indicates configurations from fine to coarse
(left to right)

Figure 12 further evaluates VLoRP on LLaMA3.2-3B using the GSM8K benchmark. The left subfigure compares VLoRP
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to other adaptation methods, where VLoRP achieves the highest GSM8K score (39.88). The right subfigure examines the
impact of projection granularity on VLoRP’s performance. Instead of achieving the best performance at the finest granularity
(c = 28, r = 1), we find that the slightly coarser configuration (c = 24, r = 24) reaches the highest GSM8K score of 39.88.
However, a general trend where finer-grained configurations yield better results still holds.

D.9. Specific Statistics of Figure 4

In this section, we present the detailed data for Figure 4, which displays the average performance across eight commonsense
reasoning tasks. From Table 5, Table 6, and Table 7, it is evident that the finer configuration (larger c and smaller r)
consistently outperforms coarser configurations across nearly all tasks when evaluated under the same memory budget.

Table 5: Performance Comparison on Commonsense Benchmark Tasks (Memory Budget 256).

Configurations ARC C ARC E BoolQ HellaSwag OBQA PIQA SIQA winogrande Avg.

- c = 2−6, r = 214 42.92 ± 1.45 76.22 ± 0.87 79.27 ± 0.71 57.53 ± 0.49 32.60 ± 2.10 77.91 ± 0.97 46.72 ± 1.13 69.85 ± 1.29 60.38
- c = 2−4, r = 212 43.34 ± 1.45 76.26 ± 0.87 79.54 ± 0.71 57.58 ± 0.49 32.00 ± 2.09 77.64 ± 0.97 46.72 ± 1.13 70.01 ± 1.29 60.39
- c = 2−2, r = 210 43.34 ± 1.45 76.30 ± 0.81 79.45 ± 0.71 57.47 ± 0.49 32.20 ± 2.09 77.75 ± 0.97 46.78 ± 1.13 70.01 ± 1.29 60.41
- c = 20, r = 28 43.69 ± 1.45 77.02 ± 0.86 79.27 ± 0.71 57.49 ± 0.49 31.80 ± 2.08 78.07 ± 0.97 47.49 ± 1.13 69.77 ± 1.29 60.57
- c = 22, r = 26 44.03 ± 1.45 76.81 ± 0.87 79.17 ± 0.71 57.59 ± 0.49 31.80 ± 2.08 78.02 ± 0.97 47.19 ± 1.13 69.53 ± 1.29 60.53
- c = 24, r = 24 44.71 ± 1.45 77.27 ± 0.86 79.42 ± 0.71 57.50 ± 0.49 32.20 ± 2.09 77.86 ± 0.97 47.54 ± 1.13 70.09 ± 1.29 60.82
- c = 26, r = 22 44.97 ± 1.45 77.65 ± 0.85 80.46 ± 0.69 57.56 ± 0.49 33.60 ± 2.11 77.97 ± 0.97 48.06 ± 1.13 69.69 ± 1.29 61.25
- c = 28, r = 20 45.56 ± 1.46 77.78 ± 0.85 80.58 ± 0.69 57.59 ± 0.49 34.00 ± 2.12 77.86 ± 0.97 48.16 ± 1.13 69.69 ± 1.29 61.40

Table 6: Performance Comparison on Commonsense Benchmark Tasks (Memory Budget 64).

Configurations ARC C ARC E BoolQ HellaSwag OBQA PIQA SIQA winogrande Avg.

- c = 2−6, r = 212 42.83 ± 1.45 76.09 ± 0.87 78.99 ± 0.71 57.54 ± 0.49 31.80 ± 2.08 77.86 ± 0.97 46.32 ± 1.13 69.77 ± 1.29 60.15
- c = 2−4, r = 210 43.00 ± 1.45 76.14 ± 0.87 78.99 ± 0.71 57.55 ± 0.49 31.80 ± 2.08 77.97 ± 0.97 46.16 ± 1.13 69.53 ± 1.29 60.14
- c = 2−2, r = 28 43.09 ± 1.45 76.30 ± 0.87 78.78 ± 0.72 57.57 ± 0.49 31.40 ± 2.08 77.97 ± 0.97 46.16 ± 1.13 69.06 ± 1.30 60.04
- c = 20, r = 26 43.52 ± 1.45 76.56 ± 0.87 79.02 ± 0.71 57.46 ± 0.49 32.00 ± 2.09 78.07 ± 0.97 46.21 ± 1.13 69.38 ± 1.30 60.28
- c = 22, r = 24 43.43 ± 1.45 76.43 ± 0.87 79.11 ± 0.71 57.53 ± 0.49 31.40 ± 2.08 78.02 ± 0.97 46.26 ± 1.13 69.46 ± 1.29 60.21
- c = 24, r = 22 44.03 ± 1.45 76.56 ± 0.87 79.36 ± 0.71 57.51 ± 0.49 32.40 ± 2.10 77.86 ± 0.97 46.88 ± 1.13 69.61 ± 1.29 60.53
- c = 26, r = 20 45.39 ± 1.45 77.19 ± 0.87 79.91 ± 0.71 57.46 ± 0.49 33.20 ± 2.11 77.91 ± 0.97 47.70 ± 1.13 69.93 ± 1.29 61.09

Table 7: Performance Comparison on Commonsense Benchmark Tasks (Memory Budget 16).

Configurations ARC C ARC E BoolQ HellaSwag OBQA PIQA SIQA winogrande Avg.

- c = 2−6, r = 210 42.41 ± 1.44 76.18 ± 0.87 78.69 ± 0.72 57.50 ± 0.49 31.60 ± 2.08 78.07 ± 0.97 46.11 ± 1.13 69.30 ± 1.30 59.98
- c = 2−4, r = 28 43.00 ± 1.45 76.14 ± 0.87 78.90 ± 0.71 57.33 ± 0.49 31.20 ± 2.07 78.40 ± 0.96 45.85 ± 1.13 69.46 ± 1.29 60.03
- c = 2−2, r = 26 42.75 ± 1.45 76.35 ± 0.87 78.65 ± 0.72 57.37 ± 0.49 31.80 ± 2.08 78.18 ± 0.96 45.85 ± 1.13 69.30 ± 1.30 60.03
- c = 20, r = 24 43.43 ± 1.45 76.22 ± 0.87 79.08 ± 0.71 57.56 ± 0.49 32.00 ± 2.09 78.02 ± 0.97 46.37 ± 1.13 69.69 ± 1.29 60.30
- c = 22, r = 22 43.26 ± 1.45 76.39 ± 0.87 78.62 ± 0.72 57.49 ± 0.49 31.60 ± 2.08 77.97 ± 0.97 46.57 ± 1.13 69.06 ± 1.30 60.12
- c = 24, r = 20 44.88 ± 1.45 76.94 ± 0.86 79.39 ± 0.71 57.63 ± 0.49 33.20 ± 2.11 78.07 ± 0.97 47.49 ± 1.13 69.46 ± 1.29 60.88

D.10. Implementation Details

For all datasets, experiments were conducted on an NVIDIA A100 GPU (80GB) using the bfloat16 datatype. By default,
we applied our proposed ProjFactor method to VLoRP. For other low-rank-based PeFT methods, such as LoRA and GaLore,
we set the rank to r = M for a fair comparison, where M is the memory budget defined in Section 3. The training
process follows a batch size of 16 with gradient accumulation over 32 steps, yielding an effective batch size of 512.
The maximum input sequence length is 1024 tokens, and activation checkpointing is enabled to optimize memory
usage. Learning rates (η) are set to the best values found through empirical testing: 2× 10−5 for Commonsense Reasoning,
4× 10−5 for MMLU, and 10−4 for GSM8K. Notably, for GSM8K, we observed that Galore and fira require relatively larger
learning rates, while Apollo performs badly on this benchmark. Regarding training duration, models are trained for one
epoch on Commonsense Reasoning (333 iterations) and MMLU (196 iterations). For GSM8K, all models are trained for
three epochs (138 iterations) due to: (1) the higher difficulty of GSM8K questions compared to the other benchmarks and
(2) the significantly smaller training dataset size.
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Besides, the reported memory usage in Section 5 refers to the actual GPU memory allocated once the model has stabilized,
rather than the maximum memory reserved by PyTorch. The latter one is typically displayed by commands such as
watch nvidia-smi and is often larger than the former counterpart.

D.11. Showcase of Training Prompts

Example 1: CommonSense 170K

### Instruction:
Please choose the correct ending to complete the given sentence: Getting a tattoo: Man is kneeling in front ofa woman and is making a 
tattoo on her right foot. woman wearing a jean skirt

Ending1: is puting a tattoo and making it in her cheek. Ending2: is sitting in front of a man getting a tattoo. Ending3: is sitting in a living 
room of a house, in front of is wall painted black and there is pullerous dotted weeblt on the walls and the floor. Ending4: is in the 
middle of a room and c tool is in her left hand and in her left hand she is holding a candy and a black razor is on her right knee.

Answer format: ending1/ending2/ending3/ending4

### Response:

Example 2: CommonSense 170K

### Instruction:
Please choose the correct answer to fill in the blank to complete the given sentence: In dire need of a new kidney, Ryan soug ht out Jason 
so _______ could agree to donate him one.

Option1: Ryan Option2: Jason Answer format: option1/option2

### Response:

Example 3: MMLU

The following are multiple choice questions (with answers).

Question: Isabella Stewart was born in New York City in 1840. Her father made a great deal of money in trade. During school,her
parents took her to Italy to explore the country's many cultural treasures. One of the private art collections Isabella visit ed in Milan had a 
deep influence on her. She wrote to her friends about her dream of owning a house one day with an art collection like the one she had 
seen in Italy. In Paris, Isabella became a close friend of one of her classmates, Julia Gardner, whose family was from Boston . Julia 
would later introduce Isabella to her brother, Jack. In 1860, Isabella Stewart married Jack Gardner. The couple had too much art to fit 
inside their home. So they decided to start planning a museum. Mrs. Gardner didn't like the cold and empty spaces of many museums 
during her time. She wanted a warm museum filled with light. She once said that she decided years ago that _ . America was a young 
country developing quickly in other areas. But the country needed more chances for people to see beautiful examples of art. A fter her 
husband's death in 1898, Isabella knew she had no time to lose in building her museum. She bought land, hired a building desi gner, and 
supervised  every detail of her museum's construction. Mrs. Gardner opened her museum on January 1,1903. The museum was then 
called Fenway Court. She invited her friends that night for a special musical performance. The next month, she opened the mus eum to 
the public. At first, visits were limited to twenty days out of the year. Visitors paid one dollar to enter. Isabella Stewart Gardner died in 
1924 in Boston. In her will, she left the museum a million dollars and a series of requirements about how it should be manage d. One 
requirement is that the permanent collection cannot be changed. From the passage, we can learn that the museum   _  .

A. helps earn much money for its collections of art
B. is called Fenway Court by the visitors
C. was opened to the public on January 1st, 1903
D. is still affected by Isabella Gardner in management now
Answer:
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Example 4: MMLU

The following are multiple choice questions (with answers).

Question: Where do you like to live? For this question, different people have different answers. Some people like to live in a city 
because there are many shops and supermarkets. They think it is convenient to buy things. But some people think it is good to live in a 
quiet town because they don't like the dirty air in the big city. They dislike pollution in the city. Today, some people like travelling, so 
they would like to buy house cars. House car is both a house and a car. You can't buy it with a little money. There is a driv ing area in the 
car. You can do lots of things in the car. There is a bed and a lamp in the bedroom. You can make dinner in the kitchen. You can also find 
a fridge and a sink in it. You can listen to music and watch TV in the sitting room. If you are tired, you can have a shower or a bath in 
the bathroom. You can do most things you want to do. Life is travelling. Do you want to live in this kind of car? What's the advantage of 
living in the town?

A. There are no cars and buses.
B. There isn't much pollution.
C. There aren't any places to buy things.
D. The air is dirty there.
Answer:

Example 5: GSM8K

Question: Kimiko watches four YouTube videos. The first video is 2 minutes long, the second video is 4 minutes and 30 seconds, and 
the last two videos are equal in length. If she spends a total of 510 seconds watching YouTube, how many seconds long was eac h of the 
last two videos?
Answer: 

Example 6: GSM8K

Question: A business executive is going on a four day vacation where he will be unable to answer emails.  The first day he is gone, he 
receives 16 new emails.  On each of the following days, he receives half as many new emails as he received on the prior day. At the end 
of his four day vacation, how many new emails will he have received in total?
Answer: 

Example 7: GSM8K

Question: At the end of a circus act, there are 12 dogs on stage.  Half of the dogs are standing on their back legs and the other hal f are 
standing on all 4 legs.  How many dog paws are on the ground?
Answer: 
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E. Related Works
E.1. Parameter-Efficient Finetuning

To mitigate the substantial costs associated with finetuning large-scale models, Parameter-Efficient finetuning (PEFT)
methods have been introduced. These techniques adapt models to downstream tasks by training only a small fraction of
the total parameters. Existing PEFT approaches can be broadly categorized into three primary families. The first category
comprises adapter-based methods (Houlsby et al., 2019; He et al., 2022; Mahabadi et al., 2021), which integrate additional
trainable modules into the otherwise frozen backbone network. For instance, Houlsby et al. (2019) proposes the sequential
addition of linear modules to existing layers, while He et al. (2022) introduces the integration of these modules in parallel
with the original layers to enhance performance. The second category includes prompt-based methods (Lester et al., 2021;
Razdaibiedina et al., 2023; Wang et al., 2023), which augment the initial input with extra soft tokens, focusing solely on
finetuning these trainable vectors. However, prompt-based methods often face challenges stemming from sensitivity to
initialization, which can impede their overall effectiveness. Notably, both adapter-based and prompt-based methods, whether
modifying the model’s input or architecture, tend to increase inference latency compared to the baseline model. The third
category is the low-rank-based methods (e.g. LoRA) which exploit low-rank properties inside the training procedure, which
we will discuss comprehensively in the next.

E.2. Low-Rank Based Memory-Efficient Finetuning

By using two low-rank matrices to estimate the increment of pre-trained weights without incurring additional inference
overhead, LoRA (Hu et al., 2022) and its improved variants have achieved remarkable success in the field of PeFT. For
example, QLoRA (Dettmers et al., 2023) combines low-bit quantization with LoRA to facilitate the finetuning of LLMs.
AdaLoRA (Zhang et al., 2023) dynamically allocates the parameter budget across weight matrices based on importance
scores, optimizing the use of trainable parameters. Additionally, methods such as VeRA (Kopiczko et al., 2024) reduce the
number of trainable parameters by employing a single pair of low-rank matrices shared across all layers, learning small
scaling vectors instead. Wang et al. (2024) align the gradients of the low-rank matrix product with those from full finetuning
at the initial step, achieving competitive results. Furthermore, Hayou et al. (2024) explore adjusting the learning rates of the
LoRA adapter matrices independently, enhancing feature learning efficiency.

Recently, another line of research (Zhao et al., 2024; Hao et al., 2024; Jaiswal et al., 2024) has re-implemented LoRA
methods from the perspective of low-rank gradient projection. Hao et al. (2024) investigated the training dynamics of
LoRA methods and found that vanilla LoRA (Hu et al., 2022) can be approximated by a process of randomly projecting
gradients to a low-rank subspace and then projecting back. Zhao et al. (2024) followed a similar idea but chose to obtain
the projection matrix by performing Singular Value Decomposition (SVD) on the gradients to implement Galore, instead
of using a randomly sampled matrix as in FloRA (Hao et al., 2024). Chen et al. (2024b) extends Galore by incorporating
the residual error between the full-rank gradient and its low-rank approximation, effectively simulating full-rank updates.
APOLLO (Zhu et al., 2024) approximates channel-wise learning-rate scaling through an auxiliary low-rank optimizer state
derived from random projections.

E.3. The Equivalence between LoRA and LoRP

Hao et al. (2024) has shown that LoRA is approximately equivalent to an approach that compresses the gradient updates by
down-projecting them onto a lower-dimensional space, and then projecting back to the original space:

Theorem E.1 (Hao et al. (2024)). Consider a weight matrix W ∈ Rn×m with the low-rank factorization ∆W = BA where
we initially have B0 = 0n×r and A0 ∈ Rr×m randomly sampled from a standard Gaussian distribution. Assuming that the
learning rate η is sufficiently small, then the LoRA training procedure effectively restricts weight updates to the column
space of A0. Moreover, after T gradient-based update steps, the resulting weight matrix WT satisfies

WT ≈W0 − η

T−1∑
t=0

GtA0A
⊤
0 /r, (18)

where Gt denotes the gradient of W at the t-th step.

The rationale of Theorem E.1 is grounded in the Johnson–Lindenstrauss lemma and its extensions (Dasgupta & Gupta,
2003; Matousek, 2008; Indyk & Motwani, 1998), which assert that random projections via Gaussian matrices approximately
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preserve the geometry with high probability. Moreover, Hao et al. (2024) quantifies the reconstruction error, demonstrating
that the rank r needs only to scale logarithmically to maintain low element-wise error, thus ensuring computational and
memory efficiency.

E.4. Stochastic Approximation

Stochastic approximation methods (Robbins & Monro, 1951; Nevel’son & Has’ minskii, 1976; Spall, 1992) are a family
of iterative methods primarily used to solve root-finding or optimization problems. These methods address functions of
the form f(θ) = Ez[F (θ,z)], which represent the expected value of a function F that depends on a random variable z.
The goal is to infer properties of f without directly evaluating it. We focus primarily on its applications involving gradient
estimation.

Forward Gradient. FG methods (Wengert, 1964; Silver et al., 2021; Baydin et al., 2022; Ren et al., 2022) update model
parameters using directional gradients along multiple random perturbation directions and belong to the family of stochastic
approximation techniques. More formally, given a differentiable function f : RN → R, the gradient at a given input θ ∈ RN

can be approximated as
∇̂f(θ) :=

(
∇f(θ)⊤z

)
z. (19)

There are multiple choices for the random variables z. All distributions satisfying E[z] = 0 and E[zz⊤] = IN are qualified,
such as the standard Gaussian distribution and the Rademacher distribution. This way, for any given θ, ∇̂f(θ) is also an
unbiased estimator of∇f(θ) since

E[∇̂f(θ)] = E
[(
∇f(θ)⊤z

)
z
]
= E

[
zz⊤

]
∇f(θ)

= IN∇f(θ) = ∇f(θ).
(20)

In practice, to reduce variance, Monte Carlo gradient estimation can be performed by averaging forward gradients over
multiple random directions (Baydin et al., 2022; Hu et al., 2023b). Utilizing forward-mode automatic differentiation
techniques (Williams & Zipser, 1989; Pearlmutter, 1994), the Jacobian-vector product ∇θf(θ)

⊤z can be computed
efficiently with a single forward pass. This enables forward gradient learning (Wengert, 1964; Silver et al., 2021; Baydin
et al., 2022; Ren et al., 2022), which updates model parameters based on the directional gradient along a random perturbation
direction, enabling backpropagation-free training.
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