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A General Framework for Accurate and
Private Mean Estimation

Zhouhao Yang , Xingyu Xu , Graduate Student Member, IEEE, and Yuantao Gu , Senior Member, IEEE

Abstract—In this letter, we present a differentially private al-
gorithm which accurately estimates the mean of an underlying
population with given cumulative distribution function. Our algo-
rithm outperforms the former algorithms in two aspects. First, our
algorithm is capably of handling more general types of probability
distributions, possibly with a very heavy tail. Second, for light-tailed
distributions, our algorithm achieves a better level of accuracy with
fewer samples.

Index Terms—Differential privacy, mean estimation, heavy-
tailed distribution.

I. INTRODUCTION

E STIMATING the mean of a distribution given some in-
dependently and identically distributed (i.i.d.) samples is

definitely a classical and fundamental problem in statistics, sig-
nal processing, and many other fields in science and engineering.
There have been a sea of research in this vein striving for better
accuracy of mean estimation. However, in modern days some
more concerns other than accuracy are also found to be crucial.
In particular, under many circumstances, the samples contain
sensitive personal information susceptible to privacy attacks,
making the preservation of privacy crucial and indispensable.
Therefore, there is an ascending demand for learning algorithms
that can ensure the privacy of individuals.

There are several different ways to formalize the notion of
privacy in a scientific field like signal processing. Among these
different ways, the concept of differential privacy (DP), pro-
posed in [1], is arguably the most popular way by now [2], [3],
[4]. Well-designed differentially private algorithms is ought to
assemble a combination of utility and privacy. On one hand, they
provide a useful estimation of statistics. On the other hand, they
make it computationally impossible to speculate about sensitive
information of individuals from data [5].

Informally, we call a statistical analysis differentially private
if the likelihood of the (randomized) outcome does not differ
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much when a single datapoint in the dataset is altered [6]. More
precisely, we consider any algorithm that takes n samples from
some space X and outputs the result of it analyzing the samples,
e.g. an estimate of the mean of the samples, taking value in some
output space Y . The formal definition of differential privacy is
as follows.

Definition 1 (Differential Privacy (DP) [1], [7]): A random-
ized algorithm M : Xn → Y satisfies (ε, δ)-differential privacy
((ε, δ)-DP) if for every pair of neighboring datasetsX,X ′ ∈ Xn

(i.e., datasets that differ in exactly one entry), ∀S ⊂ Y ,

P [M(X) ∈ S] ≤ eεP [M(X ′) ∈ S] + δ. (1)

When δ = 0, we say that M satisfies ε-differential privacy or
pure differential privacy.

As mentioned above, an important scenario where differential
privacy is frequently involved is statistical inference. Statistical
inference is a classical statistical problem, which can be de-
scribed as follows:

Given some samplesX1, X2, . . . , Xn from an unknown prob-
abilistic model, how can we estimate certain properties, in-
cluding mean, variance, moments and other statistics, of the
underlying population [8]?

Furthermore, a rule depending on observed data to compute an
estimate of a given quantity is called an estimator. Specifically,
for some statistical property θ, we call θ̂(X1, X2, . . . , Xn) an
estimator of θ, if θ̂ estimates the quantity of θ after taking in
the samples. For the sake of convenience, we specify that an
estimator θ̂ is claimed to satisfy α-accuracy if |θ − θ̂| ≤ α.

It is noteworthy that there are various reasons a classical
estimator fails to attain accuracy and privacy [9]. On one hand,
classical estimator can be non-optimal in accuracy in case that
the probability distribution is heavy-tailed. For example, in the
seemingly simple task of mean estimation, the most commonly
used estimator, the empirical mean (X1 + · · ·+Xn)/n, does
not achieve optimal accuracy when the distribution of Xi are
heavy-tailed [10]. On the other hand, such estimators also grant
no guarantee of privacy [11]. It is therefore a nontrivial task
to design private statistical inference algorithms. Much effort
has been put in this direction in recent years, including private
mean estimation [11], [12], [13], [14], [15], private covariance
estimation [16], [17], [18], private hypothesis selection [19], etc.

In this work, we focus on univariate private mean estimation.
That is, estimating the mean of a distribution D on R given a
few i.i.d. samples X1, . . . , Xn from D. This topic has attracted
a lot of interest recently and private mean estimation algorithms
have been designed for various distributions. Unsurprisingly,
the overall trend is to design algorithms that work for more and
more general classes of distributions, while guaranteeing a rea-
sonable sample complexity, i.e. the number of samples required
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TABLE I
FORMER RESULTS (SORTED IN ASCENDING ORDER OF GENERALITY OF

ASSUMPTION)

to achieve α-accuracy. In Table I, we summarize the former
results, namely the sample complexity for different classes of
distributions.

There is however a significant gap between the sample com-
plexity results for sub-Gaussian distributions and the results for
distributions with a bounded k-th moment. Although the algo-
rithm designed for distributions with a boundedk-th moment can
also be applied to Gaussian distributions, which means it can be
considered as a more general algorithm, it actually falls short
in sample efficiency in that case. In fact, for standard Gaussian
distribution, we have Mk � √

k, thus the corresponding sample
complexity will be

n = Õ

(
1

α2
+

√
k

εαk/(k−1)

)
. (2)

The second term is much larger than the corresponding term
1/εα compared to the Gaussian case asα → 0, for most choices
of k (for small k the exponent of α is far from optimal, while
for large k the factor

√
k grows too large).

Now, based on the above reasoning, the following question
arises naturally: is it possible to establish a more unified private
mean estimation framework which enjoys both generality and
sample efficiency (i.e. accuracy) for different distributions?

II. INFORMAL STATEMENT OF RESULTS

In our work, we answer this question affirmatively by propos-
ing an ε-differentially private histogram-based algorithm that
estimates the mean of a population with α-accuracy. We focus
on the univariate case and leave the multivariate case for future
discussion.

A more detailed formulation is as follows. Denote by D
the underlying centered distribution. Now we have some i.i.d.
samples from the translated distribution μ+D and would like
to estimate μ. Instead of restricting D to be sub-Gaussian or
to be of bounded k-th moments a priori, we take a different
perspective and assume we have access to a function T (α) such
that

EX∼D(|X| − T (α))1|X|>T (α) ≤ α (3)

for everyα ∈ (0, 1). Note that there always exists some function
T satisfying (3) (as long as X is integrable, which is of course
always assumed since we are concerned with estimating the
mean of X). What we assume here is a practical way to compute
T which should be interpreted as a form of prior knowledge
on D. For example, if we know that D is sub-Gaussian with
sub-Gaussian norm≤ K, we may use T (α) = CK

√
log(C/α)

for some sufficiently large constant C > 0. If we know that the
k-th moment of D is upper bounded by 1 and know nothing
otherwise, we may use T (α) = Cα−1/(k−1). If we have a rather
comprehensive knowledge on D that we even know its c.d.f.,
we may simply compute G(x) = EX∼D(|X| − x)1|X|>x and
set T = G−1 to be an inverse of G (which exists since G is
monotone).

We also need to assume the existence of a low order moment of
the underlying population D, since otherwise even non-private
estimation is not possible. For simplicity we assume E|X|2 ≤
M , though (1 + δ)-th moment (δ > 0) would suffice.

With the above assumptions, we propose an ε-differentially
private algorithm that takes

n ≥ O

(
log

(
1

β

)(
1

α2
+

T (α)

εα
+

log(R)

ε

))
(4)

samples and guarantees that with probability at least 1− β, the
output statistical mean μ̂ is close to the original mean within
α-accuracy. Here R denotes a pre-specfied upper bound of μ,
which can usually be set as a sufficiently large constant.

III. PRIVATE MEAN ESTIMATION OF GENERAL DISTRIBUTIONS

In this section, we present our algorithm as well as its guar-
antee on privacy and accuracy. The proofs are in supplementary
material.

A. Technical Lemma

To begin with, we present a vital technical lemma necessary
for our ultimate algorithm.

In Lemma 1, we claim that there exists an ε-DP algorithm that
privately returns an interval containing a large portion of sample
points as well as the mean of the underlying population with high
probability. We name the algorithm as DP Range Estimation
Algorithm. This lemma is inspired from Algorithm 1 in [12]
and Algorithm 1 in [11].

Lemma 1 (DP Range Estimation): Let D be a mean-zero
distribution over R. Assume thatEX∼D[X] = μ ∈ [−R,R]with
some sufficiently large number R. Set

G(x) = EX∼D[(|X| − x)1|X|>x],

and T = G−1. Then for every 0 < α < 0.1, ε, R, there exists an
ε-DP Range Estimation Algorithm that requires

n ≥ O

(
1

α
+

log(Rα)

ε

)
(5)

samples, and outputs I = [a, b], such that with probability at
least 0.9, we have:

1) b− a ∈ Θ(T (α)),
2) At most αn samples lie outside I ,
3) μ ∈ I and μ− a, b− μ > 2T (α).
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Algorithm 1: DP Mean Estimation PMEα,ε,R(X).

Input: Samples X1, X2, . . . , Xn, X1,
′ X2,

′ . . . , X ′
n ∈ R.

Parameters ε, α,R
Output: μ̂ ∈ R: An ε-DP estimation of the mean of the
underlying population
Set iteration parameter m = 10 log( 2β )

for i = 1, 2, . . . ,m do
Let Yi = {Xi :

(i−1)n
m ≤ i ≤ in

m + 1}
Let Y ′

i = {X ′
i :

(i−1)n
m ≤ i ≤ in

m + 1}
Run DP Range Estimation Algorithm for Y ′

i and
outputs an interval Ii, ri = |Ii|

for x ∈ Yi do
y = argminy∈Ii |y − x|
x = y

end for
end for
μ̂i =

1
n

∑
y∈Yi

y + Lap(mri
εn )

μ̂ = Median(μ̂1, . . . , μ̂m)
return μ̂

B. Our Algorithm

In this subsection, we present our main contribution: an ε-DP
Private Mean Estimation Algorithm for general distributions.
The algorithm is divided into two parts. First, we limit the data
into a designated range for the purpose of (1) preserving privacy
(2) achieving optimal accuracy, which requires constraining the
amount of noise added. Second, we estimate the mean of a given
dataset in a differentially private way.

In the following, we concentrate on private mean estimation.
Essentially, the algorithm is based on the trade-off between
privacy and accuracy. On one hand, the range of our previously
constructed interval should be large enough so that if we truncate
the distribution within it, then the mean of the truncated distri-
bution will be close to the mean of the original distribution. On
the other hand, the range ought to be small enough so that the
noise added guarantees the privacy of the algorithm. Based on
those considerations, we assert that our algorithm is not only
differentially private, but is accurate enough without bringing a
large overhead to the sample complexity.

Theorem 1: Let D be a distribution over R with its (1 + k)-th
central moment bounded byM for some k ∈ (0, 1]. Assume that
EX∼D[X] = μ ∈ [−R,R] with some sufficiently large number
R. Let

G(x) = EX∼D[(|X| − x)1|X|>x],

and T = G−1. Then for all ε, α,R > 0, there exists an ε-DP
algorithm that takes

n ≥ O

(
log

(
1

β

)(
1

α2
+

T (α)

εα
+

log(R)

ε

))
. (6)

samples from D and outputs μ̂ ∈ R, such that with probability
at least 1− β, we have

|μ− μ̂| ≤ α.

IV. EXPERIMENTS

In this section, we justify our conclusion both theoretically
and experimentally. For the theoretical part, we will compare

our algorithm with the former ones in the cases of Gaussian
distributions and of distributions with bounded k-th moment.
For the experimental part, we compare our algorithm with the
one proposed by Kamath et al. in [11]. For distributions with
a very heavy tail, Kamath et al.’s algorithm may fail, whereas
our algorithm can still be applied. We design an experiment for
Gaussian distributions and Levy-stable distributions.

We shall begin with theoretical verification, contrasting our
results, which is based onG(x) = E[(|X| − x)1|X|>x] andT =

G−1, with the results proved in the literature before.

A. Theoretical Verification

1) Gaussian Distributions: Since α is close to 0, by pure
computation, we have

T (α) = O
(√

log(1/α)
)

(7)

under the assumption that D is a standard Gaussian distribution.
Then the sample complexity becomes

n ≥ O

⎛⎝log

(
1

β

)⎛⎝ 1

α2
+

√
log( 1

α )

εα
+

log(R)

ε

⎞⎠⎞⎠ , (8)

which matches the result of [12].
2) Distributions With Bounded K-th Moment: Let X be a

distribution over R with mean μ = 0 and k-th moment bounded
by M . By Chebyshev’s inequality,

P (|X| > tM
1
k ) ≤ M

tk
(∀t > 0). (9)

Subsequently, since α is small,

T (α) = O

(
M

1
k

α
1

k−1

)
. (10)

And the sample complexity turns into

n ≥ O

(
log

(
1

β

)(
1

α2
+

1

εα
k

k−1

+
log(R)

ε

))
, (11)

which matches the result in [11] fork ≥ 2. However, note that we
never assume k ≥ 2 in our algorithm, thus our algorithm works
for more general distributions, in particular, the important class
of Levy distributions (c.f. the section on Experiments).

B. Numerical Experiments

We compare our algorithm with the one proposed in [11].
We demonstrate that our algorithm enjoys a better sample
efficiency: we entail fewer samples to achieve a similarly
accurate mean estimation. We focus on two classes of mean-zero
underlying populations. For each distribution, we will repeat
the experiments for 30 times and utilize the mean square root of
the outputs as the final estimated mean of our algorithm. Since
we set the mean of underlying populations to be 0, the output
of the algorithms is regarded as the final accuracy.

Furthermore, note that there is a constant factor in the length
r of buckets in histogram algorithm as well as the sample
complexity n, we should pre-run the algorithms and find appro-
priate constants in advance. Then, when we run the algorithms
as in the above procedure, the constants are fixed for changing
α, ε and R.
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Fig. 1. Log-log plot ofα ∼ n dependence for Standard Gaussian Distribution.

Fig. 2. Log-log plot of α ∼ n dependence for Levy-stable distribution with
α∗ = 1.5.

Gaussian Distributions (light tail, better accuracy): Assume
that the underlying population D is a standard normal distri-
bution N (0, 1). Using our algorithm, the theoretical relation
between sample complexity and input parameters ought to be

n = O

⎛⎝log

(
1

β

)⎛⎝ 1

α2
+

√
log( 1

α )

εα
+

log(R)

ε

⎞⎠⎞⎠ . (12)

For Kamath et al.’s algorithm, we use the k-th moment of D and
set e.g. k = 3, 4 in experiments. Thus we have

n = O

(
log

(
1

β

)(
1

α2
+

1

εα
k

k−1

+
log(R)

ε

))
. (13)

The superiority of our algorithm is that we require less number of
samples n to achieve a pre-specified accuracyα. To demonstrate
this phenomenon, we consider the case where ε  1, corre-
sponding to a strict-privacy scenario, such that the second term
in the above equations are dominant.

See Fig. 1 for an illustration of theα ∼ n dependence. We can
conclude that for our algorithm, α ∝ n−1. For Kamath et al.’s

Fig. 3. Log-log plot of α ∼ n dependence for Levy-stable distribution with
α∗ = 1.8.

algorithm, k = 3, 4 corresponds resp. to α ∝ n−2/3 and α ∝
n−3/4, matching our previous analysis.

Levy-stable distributions (heavier tail, better applicability):
Levy-stable distributions are an important class of heavy-tailed
distributions that are often used in practice [21], [22], [23], [24],
[25]. They are controlled by four parameters (α∗, β∗, γ∗, μ∗),
which respectively stand for stability, skewness, scale and loca-
tion. Assume f(x;α∗, β∗, γ∗, μ∗) to be the probability density
function of a Levy-stable distributionL(α∗, β∗, γ∗, μ∗), then the
asymptotic behavior of an Levy-stable distribution suggests that

lim
x→±∞ f(x;α∗, 0, 1, 0) =

α∗Γ(α∗) sin(πα
∗

2 )

π|x|1+α∗ . (14)

Therefore, G(x) ∈ Θ(x1−α∗
) (x → +∞) and T (α) ∈

Θ(α
1

1−α∗ ) (α → 0+). Using our algorithm, the sample
complexity shall be

n = O

(
log

(
1

β

)(
1

α
1+α∗
α∗

+
1

εα
α∗

α∗−1

+
log(R)

ε

))
. (15)

Meanwhile, since the order of finite moment of a Levy-stable
distribution L(α∗, β∗, γ∗, μ∗) can not exceed α∗, it’s inappropri-
ate to use Kamath et al.’s algorithm in this case.

In the experiments, we consider L(α∗, β∗, γ∗, μ∗) =
(α∗, 0, 1, 0)withα∗ = 1.5, 1.8 respectively. See Fig. 2 and Fig. 3
for the α ∼ n dependence. We can conclude that using our
algorithm, α ∝ n−(α∗−1)/α∗

, which is in accordance with our
former analysis.

V. CONCLUSION

In this letter, a differentially private mean estimation algo-
rithm for general distributions is proposed. Our algorithm has
an edge in both generality and sample efficiency. We provide
an upper bound for the sample complexity of our algorithm.
In addition, experiments regarding Gaussian distributions and
Levy-stable distributions are also included to justify the practical
utility of our result.
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